
Simulink® Design Optimization™

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Design Optimization™ User’s Guide

© COPYRIGHT 1993–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2009 Online only New for Version 1 (Release 2009a)
September 2009 Online only Revised for Version 1.1 (Release 2009b)
March 2010 Online only Revised for Version 1.1.1 (Release 2010a)
September 2010 Online only Revised for Version 1.2 (Release 2010b)
April 2011 Online only Revised for Version 1.2.1 (Release 2011a)
September 2011 Online only Revised for Version 2.0 (Release 2011b)
March 2012 Online only Revised for Version 2.1 (Release 2012a)
September 2012 Online only Revised for Version 2.2 (Release 2012b)
March 2013 Online only Revised for Version 2.3 (Release 2013a)
September 2013 Online only Revised for Version 2.4 (Release 2013b)
March 2014 Online only Revised for Version 2.5 (Release 2014a)

Contents

Data Analysis and Processing

1
Model Requirements for Importing Data 1-2

Import Data (GUI) . 1-4
Creating an Estimation Project . 1-4
Importing Time-Domain Data into the GUI 1-6
Importing Time-Series Data into the GUI 1-10
Importing Complex Data into the GUI 1-10

Plot and Analyze Data (GUI) . 1-11
Why Plot the Data Before Parameter Estimation 1-11
How To Plot Data in the GUI . 1-11

Ways to Preprocess Data . 1-14

Preprocess Data (GUI) . 1-15
Opening the Data Preprocessing Tool 1-15
Handling Missing Data . 1-17
Handling Outliers . 1-19
Detrending Data . 1-19
Filtering Data . 1-19
Selecting Data . 1-21

Add Preprocessed Data Sets to Estimation Project
(GUI) . 1-30
Overwriting an Existing Data Set . 1-30
Creating a New Data Set . 1-31

Export Prepared Data to the MATLAB Workspace 1-33

v

Parameter Estimation

2
Specify Estimation Data . 2-3
Creating an Estimation Task . 2-3
How to Specify Data . 2-4

Specify Parameters to Estimate . 2-7
Choosing Which Parameters to Estimate First 2-7
How to Specify Parameters for Estimation 2-7
Specifying Initial Guesses and Upper/Lower Bounds 2-12

Specify Independent Parameters to Estimate 2-15

Specify Known Initial States . 2-19
When to Specify Initial States Versus Estimate Initial
States . 2-19

How to Specify Initial States in the GUI 2-19

Progress Plots . 2-22
Types of Plots . 2-22
Basic Steps for Creating Plots . 2-22

Estimation and Simulation Options 2-26
Estimation Options . 2-26
Simulation Options . 2-32

Progress Display Options . 2-38

Run Estimation . 2-39

Model Validation . 2-43

Load and Import Validation Data 2-44

Compare Measured and Simulated Responses 2-47

Compare Residuals . 2-51

vi Contents

Accelerating Model Simulations During Estimation . . 2-53
About Accelerating Model Simulations During
Estimation . 2-53

Limitations . 2-53
Setting the Accelerator Mode for Parameter Estimation . . 2-53

Speedup Using Parallel Computing 2-55
When to Use Parallel Computing for Parameter
Estimation . 2-55

How Parallel Computing Speeds Up Estimation 2-55

How to Use Parallel Computing . 2-59
Configure Your System for Parallel Computing 2-59
Model Dependencies . 2-59
Estimate Parameters Using Parallel Computing (GUI) . . . 2-61
Estimate Parameters Using Parallel Computing (Code) . . 2-64
Troubleshooting . 2-65

Estimating Initial Conditions for Blocks with External
Initial Conditions . 2-68

Estimate Model Parameters and Initial States (GUI) . . 2-69
Loading the Example . 2-69
Model Parameters . 2-70
Setting Up the Estimation Project . 2-71
Importing Transient Data and Selecting Parameters for
Estimation . 2-72

Selecting Parameters and Initial Conditions for
Estimation . 2-74

Creating the Estimation Task . 2-76
Running the Estimation and Viewing Results 2-78
Related Examples . 2-79

Estimation Projects . 2-80
Structure of an Estimation Project 2-80
Managing Multiple Projects and Tasks 2-81
Adding, Deleting and Renaming an Estimation Project . . . 2-82
Saving Control and Estimation Tools Manager Projects . . 2-83
Loading Control and Estimation Tools Manager Projects . . 2-84

vii

How the Software Formulates Parameter Estimation as
an Optimization Problem . 2-85
Overview of Parameter Estimation as an Optimization
Problem . 2-85

Cost Function . 2-85
Bounds and Constraints . 2-88
Optimization Methods and Problem Formulations 2-89

Writing a Cost Function . 2-95
Cost Function Overview . 2-95
Convenience Objects . 2-96
Inputs . 2-98
Evaluate Requirements . 2-99
Outputs . 2-100

Gradient Computations . 2-103

Estimate Model Parameter Values (Code) 2-104

Estimate Model Parameters and Initial States
(Code) . 2-115

EstimateModel Parameters usingMultiple Experiments
(Code) . 2-124

Estimate Model Parameters Per Experiment (Code) . . 2-136

Estimate Model Parameters with Parameter
Constraints (Code) . 2-148

Estimate Model Parameter Values (GUI) 2-157

Response Optimization

3
How the Optimization Algorithm Formulates
Minimization Problems . 3-3

viii Contents

Feasibility Problem and Constraint Formulation 3-3
Tracking Problem . 3-6
Gradient Descent Method Problem Formulations 3-7
Simplex Search Method Problem Formulations 3-9
Pattern Search Method Problem Formulations 3-10
Gradient Computations . 3-11

Specify Signals to Log . 3-13

Specifying Step Response Characteristics 3-14
Specify Step Response Characteristics 3-14

Specifying Custom Requirements 3-18

Move Constraints . 3-22
Move Constraints Graphically . 3-22
Position Constraints Exactly . 3-23

Specify Time-Domain Design Requirements 3-25
Specify Piecewise-Linear Lower and Upper Bounds 3-25
Specify Signal Property Requirements 3-27
Specify Step Response Characteristics 3-29
Track Reference Signals . 3-33
Specify Custom Requirements . 3-35
Edit Design Requirements . 3-38

Edit Design Requirements . 3-41
Edit Design Requirement Dialog Box Parameters 3-41

Specify Frequency-Domain Design Requirements 3-43
Specify Lower Bounds on Gain and Phase Margin 3-43
Specify Piecewise-Linear Lower and Upper Bounds on
Frequency Response . 3-45

Specify Bound on Closed-Loop Peak Gain 3-47
Specify Lower Bound on Damping Ratio 3-49
Specify Upper and Lower Bounds on Natural Frequency . . 3-51
Specify Upper Bound on Approximate Settling Time 3-53
Specify Piecewise-Linear Upper and Lower Bounds on
Singular Values . 3-55

Specify Step Response Characteristics 3-58
Specify Custom Requirements . 3-61

ix

Specify Design Variables . 3-65

Specify Independent Parameters to Optimize 3-67

Update Model with Design Variables Set 3-71

General Options . 3-73
Accessing General Options . 3-73
Progress Options . 3-73
Result Options . 3-74

Optimization Options . 3-77
Accessing Optimization Options . 3-77
Selecting Optimization Methods . 3-78
Selecting Optimization Termination Options 3-79
Selecting Additional Optimization Options 3-80

Create Linearization I/O Sets . 3-82
Create Linearization I/O Set . 3-82

Linearization Options . 3-84
Accessing Linearization Options . 3-84
Configuring Linearization Options 3-84

Plots in the Design Optimization Tool 3-87
Adding Plots in Design Optimization Tool 3-87
Plotting Current Response . 3-87
Plotting Intermediate Steps . 3-87
Modifying Plot Properties . 3-88
Plot Types . 3-89
Export Design Variables and Requirement Values for an
Iteration . 3-92

Compare Requirements and Design Variables Using
Spider Plot . 3-94

Export Design Variable Values for Specific Iteration . . 3-98

x Contents

Design Optimization to Meet Time- and
Frequency-Domain Requirements (GUI) 3-100

Design Optimization to Meet a Custom Objective
(GUI) . 3-105

Design Optimization to Meet a Custom Objective
(Code) . 3-112

Design Optimization to Meet Custom Signal
Requirements (GUI) . 3-122

Design Optimization to Meet Frequency-Domain
Requirements (GUI) . 3-127

Specify Custom Signal Objective with Uncertain
Variable (GUI) . 3-136

Design Optimization with Uncertain Variables
(Code) . 3-141

Generate MATLAB Code for Design Optimization
Problems (GUI) . 3-149

Skip Model Simulation Based on Parameter Constraint
Violation (GUI) . 3-152

Optimizing Parameters for Robustness 3-157
What Is Robustness? . 3-157
Sampling Methods for Uncertain Parameters 3-158
Optimize Parameters for Robustness (GUI) 3-162

Accelerating Model Simulations During
Optimization . 3-170
About Accelerating Optimization . 3-170
Limitations . 3-170
Setting Accelerator Mode for Response Optimization 3-170

Speedup Using Parallel Computing 3-172

xi

When to Use Parallel Computing for Response
Optimization . 3-172

How Parallel Computing Speeds Up Optimization 3-173

How to Use Parallel Computing . 3-177
Configure Your System for Parallel Computing 3-177
Model Dependencies . 3-177
Optimize Design Using Parallel Computing (GUI) 3-179
Optimize Design Using Parallel Computing (Code) 3-182
Troubleshooting . 3-183

Optimization Does Not Make Progress 3-186
Should I worry about the scale of my responses and how
constraints and design requirements are discretized? . . 3-186

Why don’t the responses and parameter values change at
all? . 3-186

Why does the optimization stall? . 3-186

Optimization Convergence . 3-188
What to do if the optimization does not get close to an
acceptable solution? . 3-188

Why does the optimization terminate before exceeding
the maximum number of iterations, with a solution
that does not satisfy all the constraints or design
requirements? . 3-189

What to do if the optimization takes a long time to converge
even though it is close to a solution? 3-189

What to do if the response becomes unstable and does not
recover? . 3-190

Optimization Speed and Parallel Computing 3-191
How can I speed up the optimization? 3-191
Why are the optimization results with and without using
parallel computing different? . 3-192

Why do I not see the optimization speedup I expected using
parallel computing? . 3-192

Why does the optimization using parallel computing not
make any progress? . 3-193

Why does the optimization using parallel computing not
stop when I click the Stop optimization button? 3-193

Undesirable Parameter Values . 3-194

xii Contents

What to do if the optimization drives the tuned compensator
elements and parameters to undesirable values? 3-194

What to do if the optimization violates bounds on parameter
values? . 3-194

Reverting to Initial Parameter Values 3-196
How do I quit an optimization and revert to my initial
parameter values? . 3-196

Manage Design Optimization Tool Session 3-197
Save a Session . 3-197
Load a Session . 3-197

Optimizing Time-Domain Response of Simulink®
Models Using Parallel Computing 3-199

Sensitivity Analysis

4
What Is Sensitivity Analysis? . 4-2

Sampling Parameters for Sensitivity Analysis 4-4
Probability Distribution . 4-4
Bounds . 4-5
Number of Samples . 4-5
Method of Sampling . 4-5
Custom Sample Sets . 4-8

Sensitivity Analysis Methods . 4-11
Visual Analysis . 4-11
Quantitative Analysis . 4-11

Perform Sensitivity Analysis Using Parallel
Computing . 4-14
Configure Your System for Parallel Computing 4-14
Model Dependencies . 4-14
Perform Sensitivity Analysis Using Parallel Computing . . 4-16

xiii

Design Exploration using Parameter Sampling
(Code) . 4-18

Identify Key Parameters for Estimation (Code) 4-29

Optimization-Based Control Design

5
Overview of Optimization-Based Compensator
Design . 5-2

Time-Domain Design Requirements in Simulink 5-4
Specify Piecewise-Linear Lower and Upper Bounds 5-4
Specify Step Response Characteristics 5-6
Track Reference Signals . 5-9
Specify Custom Requirements . 5-11
Edit Design Requirements . 5-14

Frequency-Domain Design Requirements in
Simulink . 5-17
Specify Lower Bounds on Gain and Phase Margin 5-17
Specify Piecewise-Linear Lower and Upper Bounds on
Frequency Response . 5-19

Specify Bound on Closed-Loop Peak Gain 5-21
Specify Lower Bound on Damping Ratio 5-23
Specify Upper and Lower Bounds on Natural Frequency . . 5-25
Specify Upper Bound on Approximate Settling Time 5-27
Specify Piecewise-Linear Upper and Lower Bounds on
Singular Values . 5-29

Specify Step Response Characteristics 5-32
Specify Custom Requirements . 5-35

Time- and Frequency-Domain Requirements in SISO
Design Tool . 5-39
Root Locus Diagrams . 5-39
Open-Loop and Prefilter Bode Diagrams 5-41
Open-Loop Nichols Plots . 5-41
Step/Impulse Response Plots . 5-42

xiv Contents

Time-Domain Simulations in SISO Design Tool 5-44

How to Design Optimization-Based Controllers for LTI
Systems . 5-45

Optimize LTI System to Meet Frequency-Domain
Requirements . 5-47
Introduction . 5-47
Design Requirements . 5-47
Creating an LTI Plant Model . 5-48
Creating Design and Analysis Plots 5-49
Creating a Response Optimization Task 5-52
Selecting Tunable Compensator Elements 5-54
Adding Design Requirements . 5-55
Optimizing the System’s Response 5-63
Creating and Displaying the Closed-Loop System 5-66

Designing Linear Controllers for Simulink Models . . . 5-68

Lookup Tables

6
What are Adaptive Lookup Tables? 6-2
Lookup Tables . 6-2
Adaptive Lookup Tables . 6-2

How to Estimate Lookup Table Values 6-5

Estimate Constrained Values of a Lookup Table 6-6
Objectives . 6-6
About the Data . 6-6
Configuring a Project for Parameter Estimation 6-7
Estimating the Monotonically Increasing Table Values
Using Default Settings . 6-9

Validating the Estimation Results . 6-16

Estimate Lookup Table Values from Data 6-22
Objectives . 6-22

xv

About the Data . 6-22
Configuring a Project for Parameter Estimation 6-22
Estimating the Table Values Using Default Settings 6-24
Validating the Estimation Results . 6-30

Building Models Using Adaptive Lookup Table
Blocks . 6-36

Selecting an Adaptation Method . 6-40
Sample Mean . 6-40
Sample Mean with Forgetting . 6-41

Model Engine Using n-D Adaptive Lookup Table 6-42
Objectives . 6-42
About the Data . 6-42
Building a Model Using Adaptive Lookup Table Blocks . . . 6-43
Adapting the Lookup Table Values Using Time-Varying I/O
Data . 6-52

Using Adaptive Lookup Tables in Real-Time
Environment . 6-56

xvi Contents

1

Data Analysis and
Processing

• “Model Requirements for Importing Data” on page 1-2

• “Import Data (GUI)” on page 1-4

• “Plot and Analyze Data (GUI)” on page 1-11

• “Ways to Preprocess Data” on page 1-14

• “Preprocess Data (GUI)” on page 1-15

• “Add Preprocessed Data Sets to Estimation Project (GUI)” on page 1-30

• “Export Prepared Data to the MATLAB Workspace” on page 1-33

1 Data Analysis and Processing

Model Requirements for Importing Data
Before you can analyze and preprocess the estimation data, you must assign
the data to the model’s channels. In order to assign the data, the Simulink®

model must contains one of the following elements:

• Top-level Inport block

Note You do not need an Inport block if your model already contains a
fixed input block, such as a Step block.

• Top-level Outport block

• Logged signal. The logged signal can be a top-level signal in the model
or a signal in the model subsystem.

To enable signal logging for a signal, in the Simulink Editor, select that

signal, click the Record button arrow and click Log/Unlog Selected
Signals. For more information, see “Export Signal Data Using Signal
Logging” in the Simulink documentation.

In the Control and Estimation Tools Manager GUI, the rows in the Input
Data tab correspond to the model’s top-level Inport blocks.

Similarly, the rows in the Output Data tab correspond to either the top-level
Outport blocks or logged signals in the model.

Adding an Inport or Outport block or marking a signal for logging creates a
new row in the corresponding Input Data or Output Data tab. You can use
the new row to import estimation data for the corresponding signal. To view

1-2

Model Requirements for Importing Data

the new row, click Update Task in the Estimation Task node of the Control
and Estimation Tools Manager GUI.

More About

“Supported Data”

1-3

1 Data Analysis and Processing

Import Data (GUI)

In this section...

“Creating an Estimation Project” on page 1-4

“Importing Time-Domain Data into the GUI” on page 1-6

“Importing Time-Series Data into the GUI” on page 1-10

“Importing Complex Data into the GUI” on page 1-10

Creating an Estimation Project
Before you begin data import, you must create and set up an estimation
project by configuring the appropriate parameters, solvers, and cost functions.
Simulink Design Optimization™ software provides a Graphical User Interface
(GUI) that makes setting up the estimation project quick and easy.

To create an estimation project:

1 Open the nonlinear idle speed model of an automotive engine by typing :

engine_idle_speed

at the MATLAB® prompt.

The model appears as shown next.

1-4

Import Data (GUI)

The model contains the Inport block BPAV and Outport block Engine Speed
for importing input and output data, respectively. To learn more, see
“Model Requirements for Importing Data” on page 1-2.

2 Open the Control and Estimation Tools Manager GUI by selecting
Analysis > Parameter Estimation in the Simulink model window.

Control and Estimation Tools Manager GUI

The project tree displays the project name Project - engine_idle_speed.
Estimation tasks are organized inside the Estimation Task node.

Note The Simulink model must remain open to perform parameter
estimation tasks.

1-5

1 Data Analysis and Processing

Importing Time-Domain Data into the GUI
After you create an estimation project, as described in “Creating an
Estimation Project” on page 1-4, you can import the estimation data into
the GUI. To learn more about the types of data for parameter estimation,
see “Supported Data”.

To import transient (measured) data for your dynamic system:

1 In the Control and Estimation Tools Manager, select Transient Data
under the Estimation Task node of the Workspace tree.

2 Right-click Transient Data and select New to create a New Data node.
Alternatively, you can use the New button to create this node.

3 Select the New Data node under the Transient Data node.

1-6

Import Data (GUI)

The Control and Estimation Tools Manager GUI now resembles the next
figure.

Import Data into the Control and Estimation Tools Manager

The table rows in the Input Data tab corresponds to the Inport block BPAV
in the engine_idle_speed model. Similarly, the rows in the Output Data
tab corresponds to the Outport block Engine Speed.

Note The Simulink model must contain an Inport or Outport block or
logged signals to enable importing data. For more information, see “Model
Requirements for Importing Data” on page 1-2.

The idle-speed model of an automotive engine contains the measured data
stored in the iodata array. The array contains two columns: the first for

1-7

1 Data Analysis and Processing

input data, and the second for output data. You must import both the input
and the output data, as described in the following sections:

• “Importing Input Data and Time Vector” on page 1-8

• “Importing Output Data and Time Vector” on page 1-9

Importing Input Data and Time Vector
To import the input data for the port BPAV:

1 In the New Data node, click the Input Data tab.

2 Right-click the Data cell and select Import to open the Data Import dialog
box. Alternatively, you can use the Import button to open this dialog box.

3 In the Data Import dialog box, select iodata from the list of variables.

1-8

Import Data (GUI)

4 Enter 1 in the Assign the following columns to selected channel(s)
field, and then click Import.

5 In the Input Data tab, select the Time/Ts cell.

6 Select time in the Data Import dialog box.

7 Click Import to import the time vector for the input data.

8 Click Close to close the Data Import dialog box.

Importing Output Data and Time Vector
To import the output data for the port Engine Speed:

1 In the New Data node, select the Output Data tab.

2 Right-click the Data cell and select Import to open the Data Import dialog
box.

3 In the Data Import dialog box, select iodata from the list of variables.

4 Enter 2 in the Assign the following columns to selected channel(s)
field to use the second column of iodata, and then click Import.

5 In the Output Data tab, select the Time/Ts cell.

1-9

1 Data Analysis and Processing

6 Select time in the Data Import dialog box.

7 Click Import to import the time vector for the output data.

8 Click Close to close the Data Import dialog box.

Importing Time-Series Data into the GUI
Time-series data is stored in time-series objects. For more information, see
“Time Series Objects” in the MATLAB documentation.

When you import time-series data for parameter estimation, specify the data
and time vector as t.data and t.time in the Data and Time/Ts columns of the
New Data node, respectively. For more information on how to import data
into the GUI, see “Importing Time-Domain Data into the GUI” on page 1-6.

Importing Complex Data into the GUI
Complex-valued data is data whose value is a complex number. For example,
a signal with the value 1+2j is complex. You can use complex data to estimate
parameters of electrical systems, such as the magnitude and phase.

Note You must sample the real and imaginary parts of the data as a function
of the same time vector.

To use complex data for parameter estimation:

1 Split the data into two data sets that contain the real and imaginary parts.
To split the data, use the MATLAB functions real, and imag.

2 Import both data sets into the GUI, as described in “Importing
Time-Domain Data into the GUI” on page 1-6.

3 Specify both the data sets together as estimation data, as described in
“Specify Estimation Data” on page 2-3.

4 Estimate the parameters, as described in “Run Estimation” on page 2-39.

1-10

Plot and Analyze Data (GUI)

Plot and Analyze Data (GUI)

In this section...

“Why Plot the Data Before Parameter Estimation” on page 1-11

“How To Plot Data in the GUI” on page 1-11

Why Plot the Data Before Parameter Estimation
After you import the estimation data, as described in “Import Data (GUI)” on
page 1-4, it is useful to remove outliers, smooth, detrend, or otherwise treat
the data to make it more tractable for analysis and estimation purposes. To
view and analyze the data characteristics, you must plot the data on a time
plot.

How To Plot Data in the GUI
To plot a data set, select the Data cell that you want to plot in the Transient
Data node of the Control and Estimation Tools Manager GUI, and click
Plot Data.

1-11

1 Data Analysis and Processing

The data is plotted on a time plot, as shown in the next figure.

1-12

Plot and Analyze Data (GUI)

Using the time plot, you can examine the data characteristics such as noise,
outliers and portions of the data to use for estimating parameters. After you
analyze the data, you preprocess the data as described in “Preprocess Data
(GUI)” on page 1-15.

1-13

1 Data Analysis and Processing

Ways to Preprocess Data
After you import the estimation data, as described in “Import Data (GUI)” on
page 1-4, you can perform the following preprocessing operations using the
Data Preprocessing Tool in Simulink Design Optimization software:

• Exclusion — Exclude a portion of the data from the estimation process. You
can exclude data by:

- Selecting it with your mouse.

- Graphically by selecting regions on a plot.

- Using rules, such as upper or lower bounds.

• Handle missing data –– Remove missing data, or compute missing data
using interpolation.

• Handle outliers –– Remove outliers.

• Detrend — Remove mean values or a straight line trend.

• Filter — Smooth data using a first-order filter, an arbitrary transfer
function, or an ideal filter.

1-14

Preprocess Data (GUI)

Preprocess Data (GUI)

In this section...

“Opening the Data Preprocessing Tool” on page 1-15

“Handling Missing Data” on page 1-17

“Handling Outliers” on page 1-19

“Detrending Data” on page 1-19

“Filtering Data” on page 1-19

“Selecting Data” on page 1-21

Opening the Data Preprocessing Tool
To open the Data Preprocessing Tool:

1 In the Control and Estimation Tools Manager GUI, select the Transient
Data node under the Estimation Task node, and then choose the data you
want to preprocess either in the Input Data, or Output Data tab. This
enables the Pre-process button.

1-15

1 Data Analysis and Processing

2 Click Pre-process to open the Data Preprocessing Tool.

1-16

Preprocess Data (GUI)

Tip When you have multiple data sets, select the data set that you want
to preprocess from the Modify data from drop-down list in the Data
Preprocessing Tool.

In this section, the sample data set imported for preprocessing is the same as
used in the engine_idle_speed Simulink model. For an overview of creating
estimation projects and importing data sets, see “Model Requirements for
Importing Data” on page 1-2, and “Creating an Estimation Project” on page
1-4.

Handling Missing Data

• “Removing Missing Data” on page 1-18

1-17

1 Data Analysis and Processing

• “Interpolating Missing Data” on page 1-18

Removing Missing Data
Rows of missing or excluded data are represented by NaNs. To remove the rows
containing missing or excluded data, select the Remove rows where check
box in theMissing Data Handling area of the Data Preprocessing Tool GUI.

When the data set contains multiple columns of data, select all to remove
rows in which all the data is excluded. Select any to remove any excluded cell.
In the case of one-column data, any and all are equivalent.

Tip You can view the modified data in the Modified data tab of the Data
Preprocessing Tool GUI.

Interpolating Missing Data
The interpolation operation computes the missing data values using known
data values. When you select the Interpolate missing values using
interpolation method check box in the Missing Data Handling area of
the Data Preprocessing Tool GUI, the software interpolates the missing
data values.

You can compute the missing data values using one of the following
interpolation methods:

• Zero-order hold (zoh) — Fills the missing data sample with the data value
immediately preceding it.

• Linear interpolation (Linear) — Fills the missing data sample with the
average of the data values immediately preceding and following it.

1-18

Preprocess Data (GUI)

By default, the interpolation method is set to zoh. You can select the
Linear interpolation method from the Interpolate missing values using
interpolation method drop-down list.

Tip You can view the results of interpolation in theModified data tab of the
Data Preprocessing Tool GUI.

Handling Outliers
Outliers are data values that deviate from the mean by more than three
standard deviations. When estimating parameters from data containing
outliers, the results may not be accurate.

To remove outliers, select the Outliers check box to activate outlier exclusion.
You can set theWindow length to any positive integer, and use confidence
limits from 0 to 100%. The window length specifies the number of data points
used when calculating outliers.

Removing outliers replaces the data samples containing outliers with NaNs,
which you can interpolate in a subsequent operation. To learn more, see
“Interpolating Missing Data” on page 1-18.

Detrending Data
To detrend, select the Detrending check box. You can choose constant or
straight line detrending. Constant detrending removes the mean of the data
to create zero-mean data. Straight line detrending finds linear trends (in the
least-squares sense) and then removes them.

Filtering Data

• “Types of Filters” on page 1-19

• “How to Filter Data” on page 1-20

Types of Filters
You have these choices for filtering your data:

1-19

1 Data Analysis and Processing

• First order — A filter of the type
1

1τs +
where τ is the time constant that you specify in the associated field.

• Transfer function — A filter of the type

a s a s a

b s b s b
n

n
n

n

m
m

m
m

+ + +
+ + +

−
−

−
−

1
1

0

1
1

0





where you specify the coefficients as vectors in the associated A
coefficients and B coefficients fields.

• Ideal— An idealized (noncausal) filter, either stop or pass band. Specify
either filter as a two-element vector in the Range (Hz) field. These filters
are ideal in the sense that there is no finite rolloff or ripple; the ends of the
ranges are perfectly horizontal in the frequency domain.

How to Filter Data
To filter the data to remove noise, select the Detrend/Filtering tab in the
Data Preprocessing Tool GUI. Select the Filtering check box, and choose the
type of filter from the Select filter type drop-down list.

1-20

Preprocess Data (GUI)

Selecting Data

• “Techniques for Excluding Data in the Data Preprocessing Tool” on page
1-21

• “Graphically Selecting Data” on page 1-21

• “Using Rules to Select Data Samples” on page 1-24

• “Using the Data Table to Select Data Samples” on page 1-26

Techniques for Excluding Data in the Data Preprocessing Tool
You can use the Data Preprocessing Tool to select a portion of the data to be
excluded from the estimation process. You can choose one of the following
techniques:

• Selecting data from the Data Editing Table.

• Selecting data from a plot of the data.

• Specifying a rule.

You accomplish the first two manually, and for the last you specify a rule.
When you exclude data using manual selection, the excluded data is shown
as red. When you exclude data using a rule, the background color of the cell
becomes gray. When a portion of the data is excluded both manually and by a
rule, the data is red, and the background is gray.

Note Changes in data are visible everywhere. When you use the Data
Editing table, you can view the results in the data plot.

Graphically Selecting Data
You can exclude data graphically. Click Exclude Graphically to open the
Select Points for Preprocessing Rule window.

1-21

1 Data Analysis and Processing

The way you exclude data is similar to the way you select a region for
zooming: place your cursor in the Input Data plot and drag the mouse to
draw a region of exclusion.

This figure shows an example of resulting data exclusion in the input data.

1-22

Preprocess Data (GUI)

In the Output Data plot, the excluded input data produces a blank area by
default. This corresponds to the NaNs that now represent excluded data. If
you choose to interpolate or remove the excluded data, the output data shows
the interpolated points.

When you make changes in the Select Points for Preprocessing Rule window,
they immediately appear in the Data Editing pane, and vice versa.

Selection Pane. By default, any box that you draw with your mouse selects
data for exclusion, but you can toggle between exclusion and inclusion using
the Selection pane on the left side of the Select Points for Preprocessing
Rule window.

1-23

1 Data Analysis and Processing

Using Rules to Select Data Samples
A more precise way to exclude data is to use mathematical rules. The
Exclusion Rules pane in the Data Preprocessing Tool allows you to enter
customized rules for excluding data.

These are the rules you can use to exclude data:

• “Upper and Lower Bounds” on page 1-25

• “MATLAB Expressions” on page 1-25

1-24

Preprocess Data (GUI)

• “Flatlines” on page 1-25

Upper and Lower Bounds. Select the Bounds check box to activate upper
and lower bound exclusion. Enter numbers in the Exclude X and Exclude
Y fields for upper and lower bound exclusion. By default, the exclusion rule
is to include the boundary values, but you can use the menu to exclude the
boundaries as well.

MATLAB Expressions. Use the MATLAB expression field to enter any
mathematical expression using MATLAB code. Use x as the variable name in
your expression for the data being tested.

Flatlines. If you have areas of your data set where the data is constant,
providing no new information, then you can choose to exclude those data
points as flatlines. The Window length field sets the minimum number of
constant data points required to define the area as a flatline.

1-25

1 Data Analysis and Processing

Example of Rule Exclusion. This figure shows data with a region of the
x-axis excluded.

Using the Data Table to Select Data Samples
The Data Editing table lists both the raw data set and the modified data
that you create.

1-26

Preprocess Data (GUI)

There are two tabs in the Data Editing pane: Raw data and Modified
data. The Raw Data pane shows the working copy of the data. For example,
if you exclude rows of data in the Raw data pane, the corresponding rows
of numbers become red in this table. By default the Modified data pane
represents the rows you removed by inserting NaNs.

1-27

1 Data Analysis and Processing

In the Modified data pane, you can choose to remove the excluded data
completely or interpolate it. See “Handling Missing Data” on page 1-17 for
more information.

After you select data for exclusion, you can view it graphically by clicking
Exclude Graphically.

1-28

Preprocess Data (GUI)

As you make changes in the Data Editing pane, they immediately appear in
the Select Points for Preprocessing Rule window, and vice versa.

1-29

1 Data Analysis and Processing

Add Preprocessed Data Sets to Estimation Project (GUI)
After you preprocess the data using the techniques described in “Ways to
Preprocess Data” on page 1-14, you can add the data set to an estimation
project either by overwriting an existing data set or creating a new data set.

In this section...

“Overwriting an Existing Data Set” on page 1-30

“Creating a New Data Set” on page 1-31

Overwriting an Existing Data Set
To overwrite an existing data set with the preprocessed data:

1 In the Write results to area of the Data Preprocessing Tool GUI, select
the existing dataset option.

2 Choose the data set you want to overwrite from the drop-down list.

3 Click Add.

This action overwrites the selected data set with the modified data in the
Control and Estimation Tools Manager GUI.

1-30

Add Preprocessed Data Sets to Estimation Project (GUI)

Tip You can export the preprocessed data to the MATLAB Workspace, as
described in “Export Prepared Data to the MATLAB Workspace” on page 1-33.

Creating a New Data Set
If you do not want to overwrite an existing data set with the preprocessed
data, as described in “Overwriting an Existing Data Set” on page 1-30, you
can create a new data set for the preprocessed data:

1 In the Write results to area of the Data Preprocessing Tool GUI, select
the new dataset option.

2 Specify the name of the data set in the adjacent field.

1-31

1 Data Analysis and Processing

3 Click Add.

This action adds a new data node in the Control and Estimation Tools
Manager GUI containing the modified data.

Tip You can export the preprocessed data to the MATLAB Workspace, as
described in “Export Prepared Data to the MATLAB Workspace” on page 1-33.

1-32

Export Prepared Data to the MATLAB® Workspace

Export Prepared Data to the MATLAB Workspace
After you add the preprocessed data to an estimation project, as described in
“Add Preprocessed Data Sets to Estimation Project (GUI)” on page 1-30, you
can export the data set to the MATLAB Workspace. You can use the data to
further prepare it or estimate parameters using the data.

1 In the Transient Data node of the Control and Estimation Tools Manager
GUI, select the node containing the prepared data set.

2 Right-click the table Data cell containing the data that you want to export,
and select Export.

The Export to Workspace dialog box opens.

3 Specify the MATLAB variable names for the prepared data and the
corresponding time vector in the Data and Time fields, respectively.

4 Click OK.

The resulting MATLAB variables data and time4 appear in the MATLAB
Workspace browser.

1-33

1 Data Analysis and Processing

1-34

2

Parameter Estimation

• “Specify Estimation Data” on page 2-3

• “Specify Parameters to Estimate” on page 2-7

• “Specify Independent Parameters to Estimate” on page 2-15

• “Specify Known Initial States” on page 2-19

• “Progress Plots” on page 2-22

• “Estimation and Simulation Options” on page 2-26

• “Progress Display Options” on page 2-38

• “Run Estimation” on page 2-39

• “Model Validation” on page 2-43

• “Load and Import Validation Data” on page 2-44

• “Compare Measured and Simulated Responses” on page 2-47

• “Compare Residuals” on page 2-51

• “Accelerating Model Simulations During Estimation” on page 2-53

• “Speedup Using Parallel Computing” on page 2-55

• “How to Use Parallel Computing” on page 2-59

• “Estimating Initial Conditions for Blocks with External Initial Conditions”
on page 2-68

• “Estimate Model Parameters and Initial States (GUI)” on page 2-69

• “Estimation Projects” on page 2-80

• “How the Software Formulates Parameter Estimation as an Optimization
Problem” on page 2-85

2 Parameter Estimation

• “Writing a Cost Function” on page 2-95

• “Gradient Computations” on page 2-103

• “Estimate Model Parameter Values (Code)” on page 2-104

• “Estimate Model Parameters and Initial States (Code)” on page 2-115

• “Estimate Model Parameters using Multiple Experiments (Code)” on page
2-124

• “Estimate Model Parameters Per Experiment (Code)” on page 2-136

• “Estimate Model Parameters with Parameter Constraints (Code)” on page
2-148

• “Estimate Model Parameter Values (GUI)” on page 2-157

2-2

Specify Estimation Data

Specify Estimation Data

In this section...

“Creating an Estimation Task” on page 2-3

“How to Specify Data” on page 2-4

Creating an Estimation Task
After you import the transient data, as described in “Import Data (GUI)” on
page 1-4, you must create an estimation task and configure the estimation
settings. If your data contains noise or outliers, you must also preprocess the
data, as described in “Preprocess Data (GUI)” on page 1-15.

To create a container that stores the estimation settings:

1 In the Control and Estimation Tools Manager, right-click the Estimation
node in the Workspace tree and select New.

2 Select the New Estimation node.

The Control and Estimation Tools Manager now resembles the next figure.

2-3

2 Parameter Estimation

How to Specify Data
After you select the New Estimation node, the Data Sets tab appears. Here
you select the data set that you want to use in the estimation.

Select the Selected check box to the right of the New Data data set.

2-4

Specify Estimation Data

Note If you imported multiple data sets, you can select them for estimation
by selecting the check box to the right of each desired data set. When using
several data sets, you increase the estimation precision. However, you also
increase the number of required simulations: for N parameters and M data
sets, there are M*(2N+1) simulations per iteration.

Then, specify the weight of each output from this model by setting theWeight
column in the Output data weights table.

The relative weights are used to place more or less emphasis on specific
output variables. The following are a few guidelines for specifying weights:

• Use less weight when an output is noisy.

• Use more weight when an output strongly affects parameters.

2-5

2 Parameter Estimation

• Use more weight when it is more important to accurately match this model
output to the data.

2-6

Specify Parameters to Estimate

Specify Parameters to Estimate

In this section...

“Choosing Which Parameters to Estimate First” on page 2-7

“How to Specify Parameters for Estimation” on page 2-7

“Specifying Initial Guesses and Upper/Lower Bounds” on page 2-12

Choosing Which Parameters to Estimate First
Simulink Design Optimization software lets you estimate scalar, vector and
matrix parameters. Estimating model parameters is an iterative process.
Often, it is more practical to estimate a small group of parameters and use the
final estimated values as a starting point for further estimation of parameters
that are trickier. When you have a large number of parameters to estimate,
select the parameters that influence the output the most to be estimated
first. Making these sorts of choices involves experience, intuition, and a solid
understanding of the strengths and limitations of your Simulink model.

After you estimate a subset of parameters and validate the estimated
parameters, select the remaining parameters for estimation.

How to Specify Parameters for Estimation
To select parameters for estimation:

1 In the Control and Estimation Tools Manager, select the Variables node
in theWorkspace tree to open the Estimated Parameters pane.

2-7

2 Parameter Estimation

2 In the Estimated Parameters pane, click Add to open the Select
Parameters dialog box.

2-8

Specify Parameters to Estimate

The dialog box lists all the variables in the model workspace and the
MATLAB workspace that the model uses. You can use the mouse to select
the parameters to estimate.

You can also enter parameters, separated by commas, in the Specify
expression field of the Select Parameters dialog box. The parameters
can be stored in one of the following:

• Simulink software parameter object

Example: For a Simulink parameter object k, type k.value.

• Structure

Example: For a structure S, type S.fieldname (where fieldname
represents the name of the field that contains the parameter).

• Cell array

Example: Type C{1} to select the first element of the C cell array.

• MATLAB array

Example: Type a(1:2) to select the first column of a 2-by-2 array called
a.

2-9

2 Parameter Estimation

Sometimes, models have parameters that are not explicitly defined in
the model itself. For example, a gain k could be defined in the MATLAB
workspace as k=a+b, where a and b are not defined in the model but k
is used. To add these independent parameters to the Select Parameters
dialog box, see “Specify Independent Parameters to Estimate” on page 2-15.

3 Select the last seven parameters: freq1, freq2, freq3, gain1, gain2,
gain3, and mean_speed, and then click OK.

Note You need not estimate the parameters selected here all at once. You
can first select all the parameters that you are interested in, and then later
select the ones to estimate as described in the next step.

The Control and Estimation Tools Manager now resembles the next figure.

To learn how to specify the settings in the Default settings area of the
pane, see “Specifying Initial Guesses and Upper/Lower Bounds” on page
2-12.

2-10

Specify Parameters to Estimate

4 In the New Estimation node of the Control and Estimation Tools
Manager GUI, select the Parameters tab . In this pane, you select which
parameters to estimate and the range of values for the estimation.

a Select the parameters you want to estimate by selecting the check box
in the Estimate column.

b Enter initial values for your parameters in the Initial Guess column.

The default values in theMinimum and Maximum columns are -Inf
and +Inf, respectively, but you can select any range you want. For more
information, see “Specifying Initial Guesses and Upper/Lower Bounds”
on page 2-12.

Note When you specify the Minimum and Maximum values for the
parameters here, it does not affect your settings in the Variables node.
You make these choices on a per estimation basis. You can move data to
and from the Variables node into the Estimation node.

For this example, select gain1, gain2, gain3 and mean_speed for
estimation and set gain1 to 10, gain2 to 100, gain3 to 50, and mean_speed
to 500. Alternatively, use any initial values you like.

If you have good reason to believe a parameter lies within a finite range,
it is usually best not to use the default minimum and maximum values.
Often, there are computational advantages in specifying finite bounds if
you can. It can be very important to specify lower and upper bounds. For
example, if a parameter specifies the weight of a part, be sure to specify 0
as the absolute lower bound if better knowledge is unavailable.

The Control and Estimation Tools Manager now resembles the next figure.

2-11

2 Parameter Estimation

Specifying Initial Guesses and Upper/Lower Bounds
After you select parameters for estimation in the Variables node of the
Control and Estimation Tools Manager GUI, the Estimated Parameters tab
in the Control and Estimation Tools Manager looks like the following figure.

2-12

Specify Parameters to Estimate

For each parameter, use the Default settings pane to specify the following:

• Initial guess— The value the estimation uses to start the process.

• Minimum— The smallest allowable parameter value. The default is -Inf.

• Maximum— The largest allowable parameter value. The default is +Inf.

• Typical value — The average order of magnitude. If you expect your
parameter to vary over several orders of magnitude, enter the number
that specified the average order of magnitude you expect. For example, if
your initial guess is 10, but you expect the parameter to vary between
10 and 1000, enter 100 (the average of the order of magnitudes) for the
typical value.

2-13

2 Parameter Estimation

You use the typical value in two ways:

• To scale parameters with radically different orders of magnitude for equal
emphasis during the estimation. For example, try to select the typical
values so that

anticipated value
typical value

≅ 1

or

initial value
typical value

≅ 1

• To put more or less emphasis on specific parameters. Use a larger typical
value to put more emphasis on a parameter during estimation.

Related
Examples

• “Specify Independent Parameters to Estimate” on page 2-15
• “Specify Known Initial States” on page 2-19

2-14

Specify Independent Parameters to Estimate

Specify Independent Parameters to Estimate
This example shows how to specify independent parameters, that do not
appear explicitly in the model, as estimation parameters.

Assume that the parameter Kint in the model srotut1 is related to the
parameters x and y according to the relationship Kint=x+y. Also assume that
the initial values of x and y are 1 and -0.7 respectively. To estimate x and y
instead of Kint, first define these parameters in the model workspace. To
do this:

1 At the MATLAB prompt, type

srotut1

This opens the srotut1 model window.

2 Select View > Model Explorer from the srotut1 window to open the
Model Explorer window.

3 In the Model Hierarchy tree, select srotut1 > Model Workspace.

2-15

2 Parameter Estimation

4 Select Add > MATLAB Variable to add a new variable to the model
workspace. A new variable with a default name Var appears in the Name
column.

5 Double-click Var to make it editable and change the variable name to x.
Edit the initial Value to 1.

6 Repeat steps 4 and 5 to add a variable y with an initial value of -0.7.

The Model Explorer window resembles the following figure.

2-16

Specify Independent Parameters to Estimate

7 To add the Simulation Start function that defines the relationship between
Kint and the independent parameters x and y, select File > Model
Properties in the srotut1 model window.

8 In the Model Properties window, click the Callbacks tab.

9 To enter a Simulation start function, select StartFcn*, and type the name
of a new function. For example, srotut1_start in the Simulation start
function panel. Then, click OK.

10 Create a MATLAB file named srotut1_start. The content of the file
defines the relationship between the parameters in the model and the
parameters in the workspace. For this example, the content resembles
the following:

wks = get_param(gcs, 'ModelWorkspace')
x = wks.evalin('x')
y = wks.evalin('y')

2-17

2 Parameter Estimation

Kint = x+y;

Note You must first use the get_param function to get the variables x and
y from the model workspace before you can use them to define Kint.

When you select parameters for estimation in the Variables node of Control
and Estimation Tools Manager, x and y appear in the Select Parameters
dialog box.

Caution Avoid adding independent parameters together with their
corresponding dependent parameters to the lists of parameters to be
estimated. Otherwise, the estimation could give incorrect results. For
example, when a parameter c depends on the parameters a and b avoid
adding all three parameters to the list.

Concepts • “Choosing Which Parameters to Estimate First” on page 2-7

2-18

Specify Known Initial States

Specify Known Initial States

In this section...

“When to Specify Initial States Versus Estimate Initial States” on page 2-19

“How to Specify Initial States in the GUI” on page 2-19

When to Specify Initial States Versus Estimate Initial
States
Often, sets of measured data are collected at various times and under
different initial conditions. When you estimate model parameters using one
data set and subsequently run another estimation with a second data set,
your parameter values may not match. Given that the Simulink Design
Optimization software attempts to find constant values for parameters, this
is clearly a problem.

You can estimate the initial conditions using procedures that are similar to
those you use to estimate parameters. You can then use these initial condition
estimates as a basis for estimating parameters for your Simulink model. The
Control and Estimation Tools Manager has an Estimated States pane that
lists the states available for initial condition estimation.

How to Specify Initial States in the GUI
After you select parameters for estimation, as described in “Specify
Parameters to Estimate” on page 2-7, you can specify initial conditions of
states in your model. By default, the estimation uses initial conditions
specified in the Simulink model. If you want to specify initial conditions
other than the defaults, use the State Data tab. You can select the State
Data tab in the New Data node under the Transient Data node in the
Workspace tree.

2-19

2 Parameter Estimation

2-20

Specify Known Initial States

To specify the initial condition of a state for the engine_idle_speed model:

1 Select the Data cell associated with the state.

2 Enter the initial conditions. In this example, enter -0.2 for State - 1 of
the engine_idle_speed/Transfer Fcn. For State - 2, enter 0.

2-21

2 Parameter Estimation

Progress Plots

In this section...

“Types of Plots” on page 2-22

“Basic Steps for Creating Plots” on page 2-22

Types of Plots
You can choose the plot type from the Plot Type drop-down list. The following
types of plots are available for viewing and evaluating the estimation:

• Cost function — Plot the cost function values.

• Measured and simulated— Plot empirical data against simulated data.

• Parameter sensitivity— Plot the rate of change of the cost function as a
function of the change in the parameter. That is, plot the derivative of the
cost function with respect to the parameter being varied.

• Parameter trajectory— Plot the parameter values as they change.

• Residuals — Plot the error between the experimental data and the
simulated output.

Basic Steps for Creating Plots
Before you begin estimating the parameters, you must create the plots for
viewing the progress of the estimation.

Note An estimation must be created before creating views. Otherwise, the
Options table will be empty. To learn more, see “Creating an Estimation
Task” on page 2-3.

To create plots for viewing the estimation progress, follow the steps below:

1 Right-click the Views node in the Control and Estimation Tools Manager
and select New.

2-22

Progress Plots

2 In theWorkspace tree, select New View to open the View Setup pane.

2-23

2 Parameter Estimation

3 In the Select plot types table, select the Plot Type from the drop-down
list. In this example, select Cost function.

4 Select Measured and simulated as the Plot Type for Plot 2. Use this
plot to validated the estimated parameters.

5 In the Options area, select the check-box for both Plot 1 and Plot 2.

6 Click Show Plots. This displays an empty cost function plot and a plot of
the measured data.

2-24

Progress Plots

When you perform the estimation, the plot updates automatically.

2-25

2 Parameter Estimation

Estimation and Simulation Options

In this section...

“Estimation Options” on page 2-26

“Simulation Options” on page 2-32

Estimation Options

• “Accessing Estimation Options” on page 2-26

• “Supported Estimation Methods” on page 2-28

• “Selecting Optimization Termination Options” on page 2-30

• “Selecting Additional Optimization Options” on page 2-30

• “Specifying Goodness of Fit Criteria (Cost Function)” on page 2-31

• “How to Specify Estimation Options in the GUI” on page 2-31

Accessing Estimation Options
In the New Estimation node in theWorkspace tree, click the Estimation
tab.

2-26

Estimation and Simulation Options

Click Estimation Options. This action opens the Options- New Estimation
dialog box where you can specify the estimation method, algorithm options
and cost function for the estimation.

2-27

2 Parameter Estimation

The following sections describe the estimation method settings and cost
function:

• “Supported Estimation Methods” on page 2-28

• “Selecting Optimization Termination Options” on page 2-30

• “Selecting Additional Optimization Options” on page 2-30

• “Specifying Goodness of Fit Criteria (Cost Function)” on page 2-31

Supported Estimation Methods
Both the Method and Algorithm options define the optimization method.
Use the Optimization method area of the Options dialog box to set the
estimation method and its algorithm.

For the Method option, the four choices are:

• Nonlinear least squares (default) — Uses the Optimization Toolbox™
nonlinear least squares function lsqnonlin.

• Gradient descent— Uses the Optimization Toolbox function fmincon.

2-28

Estimation and Simulation Options

• Pattern search— Uses the pattern search method patternsearch. This
option requires Global Optimization Toolbox software.

• Simplex search— Uses the Optimization Toolbox function fminsearch,
which is a direct search method. Simplex search is most useful for simple
problems and is sometimes faster than fmincon for models that contain
discontinuities.

The following table summarizes the Algorithm options for the Nonlinear
least squares and Gradient descent estimation methods:

Method Algorithm Option Learn More

Nonlinear
least squares

• Trust-Region-Reflective
(default)

• Levenberg-Marquardt

In the Optimization
Toolbox
documentation,
see:

• “Trust-Region-Reflective
Least Squares
Algorithm”

• “Levenberg-Marquardt
Method”

Gradient
descent

• Active-Set (default)

• Interior-Point

• Trust-Region-Reflective

• Sequential Quadratic
Programming

In the Optimization
Toolbox
documentation,
see:

• “fmincon Active
Set Algorithm”

• “fmincon Interior
Point Algorithm”

• “fmincon Trust
Region Reflective
Algorithm”

• “fmincon SQP
Algorithm”

2-29

2 Parameter Estimation

Selecting Optimization Termination Options
Specify termination options in the Optimization options area.

Several options define when the optimization terminates:

• Diff max change — The maximum allowable change in variables
for finite-difference derivatives. See fmincon in the Optimization
Toolboxdocumentation for details.

• Diff min change — The minimum allowable change in variables for
finite-difference derivatives. See fmincon in the Optimization Toolbox
documentation for details.

• Parameter tolerance — Optimization terminates when successive
parameter values change by less than this number.

• Maximum fun evals — The maximum number of cost function
evaluations allowed. The optimization terminates when the number of
function evaluations exceeds this value.

• Maximum iterations— The maximum number of iterations allowed. The
optimization terminates when the number of iterations exceeds this value.

• Function tolerance — The optimization terminates when successive
function values are less than this value.

By varying these parameters, you can force the optimization to continue
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
At the bottom of the Optimization options pane is a group of additional
optimization options.

2-30

Estimation and Simulation Options

Additional options for optimization include:

• Display level — Specifies the form of the output that appears in the
MATLAB command window. The options are Iteration, which displays
information after each iteration, None, which turns off all output, Notify,
which displays output only if the function does not converge, and Final,
which only displays the final output. Refer to the Optimization Toolbox
documentation for more information on what type of iterative output each
method displays.

• Gradient type — When using Gradient Descent or Nonlinear least
squares as the Method, the gradients are calculated based on finite
difference methods. The Refined method offers a more robust and less
noisy gradient calculation method than Basic, although it does take longer
to run optimizations using the Refined method.

For information about how the software computes the gradients, see
“Gradient Computations” on page 2-103.

Specifying Goodness of Fit Criteria (Cost Function)
The cost function is a function that estimation methods attempt to minimize.
You can specify the cost function at the bottom of the Optimization options
area.

You have the following options when selecting a cost function:

• Cost function— The default is SSE (sum of squared errors), which uses a
least-squares approach. You can also use SAE, the sum of absolute errors.

• Use robust cost—Makes the optimizer use a robust cost function instead
of the default least-squares cost. This is useful if the experimental data has
many outliers, or if your data is noisy.

How to Specify Estimation Options in the GUI
You can set several options to tune the results of the estimation. These
options include the optimization methods and their tolerances.

2-31

2 Parameter Estimation

To set options for estimation:

1 Select the New Estimation node in the Workspace tree.

2 Click the Estimation tab.

3 Click Estimation Options to open the Options dialog box.

4 Click the Optimization Options tab and specify the options.

Simulation Options

• “Accessing Simulation Options” on page 2-32

• “Selecting Simulation Time” on page 2-33

• “Selecting Solvers” on page 2-35

Accessing Simulation Options
To estimate parameters of a model, Simulink Design Optimization software
runs simulations of the model.

To set options for simulation:

2-32

Estimation and Simulation Options

1 Select the New Estimation node in the Workspace tree.

2 Click the Estimation tab.

3 Click Estimation Options to open the Options dialog box.

4 Click the Simulation Options tab and specify the options, as described in
the following sections:

• “Selecting Simulation Time” on page 2-33

• “Selecting Solvers” on page 2-35

Selecting Simulation Time
You can specify the simulation start and stop times in the Simulation time
area of the Simulation Options tab.

By default, Start time and Stop time are automatically computed based on
the start and stop times specified in the Simulink model.

2-33

2 Parameter Estimation

To set alternative start and stop times for the optimization, enter the new
times under Simulation time. This action overwrites the simulation start
and stop times specified in the Simulink model.

Simulation Time for Data Sets with Different Time Lengths. Simulink
Design Optimization software can simulate models containing empirical
data sets of different time lengths. You can use experimental data sets for
estimation that contain I/O samples collected at different time points.

The following example shows a single-input, two-output model for which
you want to estimate the parameters.

����

�����

�����

The model uses two output data sets containing transient data samples for
parameter estimation:

• Output y1(t) at time points t t t tn1 1
1

2
1 1= { }, ,.... .

• Output y2(t) at time points t t t tm2 1
2

2
2 2= { }, ,..... .

The simulation time t is computed as:

t t t t t t t t tn m= ∪ = { }1 2 1
1

1
2

2
1

2
2 1 2, , , ,..... ,

This new set ranges from tmin to tmax. The values tmin and tmax represent
the minimum and maximum time points in t respectively.

When you run the estimation, the model is simulated over the time range t.
Simulink extracts the simulated data for each output based on the following
criteria:

2-34

Estimation and Simulation Options

• Start time— Typically, the start time in the Simulink model is set to 0.
For a nonzero start time, the simulated data corresponding to time points

before t1
1 for y1(t) and t1

2 for y2(t) are discarded.

• Stop time — If the stop time t tstop ≥ max , the simulated data
corresponding to time points in t1 are extracted for y1(t). Similarly, the
simulated data for time points in t2 are extracted for y2(t).

If the stop time t tstop < max , the data spanning time points > tstop are
discarded for both y1(t) and y2(t).

Selecting Solvers
When running the estimation, the software solves the dynamic system using
one of several Simulink solvers.

Specify the solver type and its options in the Solver options area of the
Simulation Options tab of the Options dialog box.

The solver can be one of the following Type:

• Auto (default) — Uses the simulation settings specified in the Simulink
model.

• Variable-step — Variable-step solvers keep the error within specified
tolerances by adjusting the step size the solver uses. For example, if the
states of your model are likely to vary rapidly, you can use a variable-step
solver for faster simulation. For more information on the variable-step
solver options, see “Variable-Step Solver Options” on page 2-36.

• Fixed-step — Fixed-step solvers use a constant step-size. For more
information on the fixed-step solver options, see “Fixed-Step Solver
Options” on page 2-37.

See “Choose a Solver” in the Simulink documentation for information about
solvers.

2-35

2 Parameter Estimation

Note To obtain faster simulations during estimation, you can change the
solver Type to Variable-step or Fixed-step. However, the estimated
parameter values apply only for the chosen solver type, and may differ from
values you obtain using settings specified in the Simulink model.

Variable-Step Solver Options. When you select Variable-step as the
solver Type, you can choose one of the following as the Solver:

• Discrete (no continuous states)

• ode45 (Dormand-Prince)

• ode23 (Bogacki-Shampine)

• ode113 (Adams)

• ode15s (stiff/NDF)

• ode23s (stiff/Mod. Rosenbrock)

• ode23t (Mod. stiff/Trapezoidal)

• ode23tb (stiff/TR-BDF2)

You can also specify the following parameters that affect the step-size of the
simulation:

• Maximum step size— The largest step-size the solver can use during a
simulation.

• Minimum step size— The smallest step-size the solver can use during a
simulation.

• Initial step size— The step-size the solver uses to begin the simulation.

2-36

Estimation and Simulation Options

• Relative tolerance— The largest allowable relative error at any step in
the simulation.

• Absolute tolerance— The largest allowable absolute error at any step in
the simulation.

• Zero crossing control— Set to on for the solver to compute exactly where
the signal crosses the x-axis. This option is useful when using functions
that are nonsmooth and the output depends on when a signal crosses the
x-axis, such as absolute values.

By default, the software automatically chooses the values for these options.
To specify your own values, enter them in the appropriate fields. For more
information, see “Solver Pane” in the Simulink documentation.

Fixed-Step Solver Options. When you select Fixed-step as the solver
Type, you can choose one of the following as the Solver:

• Discrete (no continuous states)

• ode5 (Dormand-Prince)

• ode4 (Runge-Kutta)

• ode3 (Bogacki-Shampine)

• ode2 (Heun)

• ode1 (Euler)

You can also specify the Fixed step size value, which determines the
step size the solver uses during the simulation. By default, the software
automatically chooses a value for this option. For more information, see
“Fixed-step size (fundamental sample time)” in the Simulink documentation.

2-37

2 Parameter Estimation

Progress Display Options
You can specify the display options by clicking Display Options in the
Estimation tab in the Control and Estimation tools Manager. This opens the
following dialog box.

Clearing a check box implies that feature will not appear in the display table
as the estimation progresses. To learn more about the display table, see
“Iterative Display” in the Optimization Toolbox documentation.

2-38

Run Estimation

Run Estimation
Before you begin estimating the parameters, you must have configured the
estimation data and parameters, and specified estimation and simulation
options, as described in “Specify Estimation Data” on page 2-3 and “Specify
Parameters to Estimate” on page 2-7.

To start the estimation, select the New Estimation node in the Control and
Estimation Tools Manager and select the Estimation tab.

Click Start to begin the estimation process. At the end of the iterations, the
window should resemble the following:

Usually, a lower cost function value indicates a successful estimation,
meaning that the experimental data matches the model simulation with the
estimated parameters.

2-39

2 Parameter Estimation

For information on types of problems you may encounter using optimization
solvers, see the following topics in the Optimization Toolbox documentation:

• “When the Solver Fails”

• “When the Solver Might Have Succeeded”

• “When the Solver Succeeds”

The Estimation pane displays each iteration of the optimization methods. To
see the final values for the parameters, click the Parameters tab.

The values of these parameters are also updated in the MATLAB workspace.
If you specify the variable name in the Initial Guess column, you can restart
the estimation from where you left off at the end of a previous estimation.

2-40

Run Estimation

After the estimation process completes, the cost function minimization plot
appears as shown in the following figure.

If the optimization went well, you should see your cost function converge on a
minimum value. The lower the cost, the more successful is the estimation.

You can also examine the measured versus simulated data plot to see how
closely the simulated data matches the measured estimation data. The next
figure shows the measured versus simulated data plot generated by running
the estimation of the engine_idle_speed model.

2-41

2 Parameter Estimation

2-42

Model Validation

Model Validation
After you complete estimating the parameters, as described in “Run
Estimation” on page 2-39, you must validate the results against another set
of data.

The steps to validate a model using the Control and Estimation Tools
Manager are:

1 Import the validation data set to the Transient Data node.

2 Add a new validation task in the Validation node in theWorkspace tree.

3 Configure the validation settings by selecting the plot types and the
validation data set from the Validation Setup pane.

4 Click Show Plots in the Validation Setup pane and view the results
in the plot window.

5 Compare the validation plots to the corresponding view plots to see if they
match.

The basic difference between the validation and views features is that you
can run validation after the estimation is complete. All views should be set
up before an estimation, and you can watch the views update in real time.
Validations can use other validation data sets for comparison with the model
response. Also, validations appear after you have completed an estimation
and do not update.

You can validate your data by comparing measured vs. simulated data for
your estimation data and validation data sets. Also, it is often useful to
compare residuals in the same way.

Related
Examples

• “Load and Import Validation Data” on page 2-44
• “Compare Measured and Simulated Responses” on page 2-47
• “Compare Residuals” on page 2-51

2-43

2 Parameter Estimation

Load and Import Validation Data
To validate the estimated parameters computed in “Run Estimation” on page
2-39, you must first import the data into the Control and Estimation Tools
Manager GUI.

To load the validation data, type

load iodataval

at the MATLAB prompt. This loads the data into the MATLAB workspace.
The next step is to import this data into the Control and Estimation Tools
Manager. See “Import Data (GUI)” on page 1-4 for information on importing
data, but the quickest way is to follow these steps:

1 Right-click the Transient Data node in the Workspace tree in the
Control and Estimation Tools Manager and select New.

2 Select New Data (2) from the Transient Data pane.

3 Right-click the New Data (2) node in the Workspace tree and select
Rename. Change the name of the data to Validation Data.

4 In the Input Data pane, select the Data cell associated with Channel
- 1 and click Import. In the Data Import dialog box, select iodataval
and assign column 1 to the selected channel by entering 1 in the Assign
columns field. Click Import to import the input data.

2-44

Load and Import Validation Data

5 Select the Time/Ts cell and import time using the Data Import dialog box.

6 Similarly, in the Output Data pane, select Time/Ts and import time.

7 In the Output Data pane, select the Data cell associated with Channel
- 1 and click Import. Import the second column of data in iodataval by

2-45

2 Parameter Estimation

selecting it from the list in the Import Data dialog box and entering 2 in the
Assign columns field. Click Import to import the output data.

The Control and Estimation Tools Manager should resemble the next
figure.

Related
Examples

• “Compare Measured and Simulated Responses” on page 2-47
• “Compare Residuals” on page 2-51

2-46

Compare Measured and Simulated Responses

Compare Measured and Simulated Responses
After you import the validation data, as described in “Load and Import
Validation Data” on page 2-44, right-click the Validation node and select
New. This creates a New Validation node in the Control and Estimation
Tools Manager.

To perform the validation:

1 Select the New Validation node in the Workspace tree to open the
Validation Setup pane.

2-47

2 Parameter Estimation

2 Click the Plot Type cell for Plot 1 and select Measured and simulated
from the drop-down menu.

3 In the Options area, select Validation Data in the Validation data set
drop-down list.

4 Click Show Plots to open a plot figure window as shown next.

2-48

Compare Measured and Simulated Responses

Measured Versus Simulated Data Plot for Validation Data

5 Compare this plot with the plot of Measured and simulated data for
the validation data. For more information on how to create this plot, see
“Progress Plots” on page 2-22.

2-49

2 Parameter Estimation

Measured and Simulated Data Views Plot

Tip Examine the residuals compare the difference between the simulated
response and measured data, as described in “Compare Residuals” on page
2-51.

Related
Examples

• “Load and Import Validation Data” on page 2-44
• “Compare Residuals” on page 2-51

2-50

Compare Residuals

Compare Residuals
The residuals plot shows the difference between the simulated response and
measured data. To indicate a good fit between the simulated output and
measured data, the residuals:

• Should lie within a small percent of the maximum output variation

• Should not display any systematic patterns

After you have compared the measured and simulated responses for an
estimation, as described in “Compare Measured and Simulated Responses”
on page 2-47, examine the residuals. Select Residuals as the Plot Type for
Plot 2 in the New Validation pane. In the Options area, select the Plot 2
check box and click Show Plots. The following figure shows the resulting
residuals plot.

Plot of Residuals Using the Validation Data

2-51

2 Parameter Estimation

Compare the validation data residuals with the original data set residuals
from the Views node in theWorkspace tree. To create the plot of residuals
for the original data set, select the New View node and choose Residuals as
the Plot Type.

Plot of Residuals Using the Test Data

The plot on the left agrees with the plot of the residuals for the validation
data. The right side has no plot because residuals were not calculated for the
validation data during the original estimation process.

Related
Examples

• “Load and Import Validation Data” on page 2-44
• “Compare Measured and Simulated Responses” on page 2-47

2-52

Accelerating Model Simulations During Estimation

Accelerating Model Simulations During Estimation

In this section...

“About Accelerating Model Simulations During Estimation” on page 2-53

“Limitations” on page 2-53

“Setting the Accelerator Mode for Parameter Estimation” on page 2-53

About Accelerating Model Simulations During
Estimation
You can accelerate the parameter estimation computations by changing the
simulation mode of your Simulink model. Simulink Design Optimization
software supports Normal and Accelerator simulation modes. For more
information about these modes, see “How Acceleration Modes Work” in the
Simulink documentation.

The default simulation mode is Normal. In this mode, Simulink software uses
interpreted code, rather than compiled C code during simulations.

In the Accelerator mode, Simulink Design Optimization software runs
simulations during estimation with compiled C code. Using compiled C code
speeds up the simulations and reduces the time to estimate parameters.

Limitations
You cannot use the Accelerator mode if your model contains algebraic loops.
If the model contains MATLAB function blocks, you must either remove them
or replace them with Fcn blocks.

Setting the Accelerator Mode for Parameter
Estimation
To set the simulation mode to Accelerator, open the Simulink model window
and perform one of the following actions:

• Select Simulation > Mode > Accelerator.

• Choose Accelerator from the drop-down list as shown in the next figure.

2-53

2 Parameter Estimation

Tip To obtain the maximum performance from the Accelerator mode, close
all Scope blocks in your model.

2-54

Speedup Using Parallel Computing

Speedup Using Parallel Computing

In this section...

“When to Use Parallel Computing for Parameter Estimation” on page 2-55

“How Parallel Computing Speeds Up Estimation” on page 2-55

When to Use Parallel Computing for Parameter
Estimation
You can use Simulink Design Optimization software with Parallel Computing
Toolbox™ software to speed up parameter estimation of Simulink models.
Using parallel computing may reduce the estimation time in the following
cases:

• The model contains a large number parameters to estimate, and the
estimation method is specified as either Nonlinear least squares or
Gradient descent.

• The Pattern search method is selected as the estimation method.

• The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent
simulations to run them in parallel on multiple MATLAB sessions, also
known as workers. The time required to simulate the model dominates the
total estimation time. Therefore, distributing the simulations significantly
reduces the estimation time.

For information on how the software distributes the simulations and the
expected speedup, see “How Parallel Computing Speeds Up Estimation” on
page 2-55.

For information on configuring your system and using parallel computing,
see “How to Use Parallel Computing” on page 2-59.

How Parallel Computing Speeds Up Estimation
You can enable parallel computing with the Nonlinear least squares,
Gradient descent and Pattern search estimation methods. The following

2-55

2 Parameter Estimation

sections describes the potential speedup using parallel computing for
estimation:

• “Parallel Computing with Nonlinear least squares and Gradient descent
Methods” on page 2-56

• “Parallel Computing with the Pattern search Method” on page 2-57

Parallel Computing with Nonlinear least squares and Gradient
descent Methods
When you select Gradient descent as the estimation method, the model is
simulated during the following computations:

• Objective value computation — One simulation per iteration

• Objective gradient computations — Two simulations for every tuned
parameter per iteration

• Line search computations — Multiple simulations per iteration

The total time, Ttotal , taken per iteration to perform these simulations is
given by the following equation:

T T N T N T T N Ntotal p ls p ls         () () (())2 1 2

where T is the time taken to simulate the model and is assumed to be equal

for all simulations, Np is the number of parameters to estimate, and Nls is

the number of line searches. Nls is difficult to estimate and you generally
assume it to be equal to one, two, or three.

When you use parallel computing, the software distributes the simulations
required for objective gradient computations. The simulation time taken per

iteration when the gradient computations are performed in parallel, TtotalP ,
is approximately given by the following equation:

T T ceil
N
N

T N T T ceil
N
N

totalP
p

w
ls

p

w
= + ⎛

⎝⎜
⎞
⎠⎟

× × + × = × + × ⎛
⎝⎜

⎞() () (2 1 2
⎠⎠⎟

+ Nls)

where Nw is the number of MATLAB workers.

2-56

Speedup Using Parallel Computing

Note The equation does not include the time overheads associated with
configuring the system for parallel computing and loading Simulink software
on the remote MATLAB workers.

The expected reduction of the total estimation time is given by the following
equation:

T
T

ceil
N
N

N

N N
totalP

total

p

w
ls

p ls
=

+ × ⎛
⎝⎜

⎞
⎠⎟

+

+ × +

1 2

1 2()

For example, for a model with Np=3, Nw=4, and Nls=3, the expected reduction of

the total estimation time equals
1 2

3
4

3

1 2 3 3
0 6

+ × ⎛
⎝⎜

⎞
⎠⎟

+

+ × +
=

ceil

()
. .

Parallel Computing with the Pattern search Method
The Pattern search method uses search and poll sets to create and compute
a set of candidate solutions at each estimation iteration.

The total time, Ttotal , taken per iteration to perform these simulations, is
given by the following equation:

T T N N T N N T N N Ntotal p ss p ps p ss ps= × × + × × = × × +((()))

where T is the time taken to simulate the model and is assumed to be equal

for all simulations, Np is the number of parameters to estimate, Nss is a

factor for the search set size, and Nps is a factor for the poll set size. Nss and

Nps are typically proportional to Np .

When you use parallel computing, Simulink Design Optimization software
distributes the simulations required for the search and poll set computations,
which are evaluated in separate parfor loops. The simulation time taken per

iteration when the search and poll sets are computed in parallel, TtotalP ,
is given by the following equation:

2-57

2 Parameter Estimation

T T ceil N
N
N

T ceil N
N
N

T ceil N
N

totalP p
ss

w
p

ps

w

p

= × × + × ×

= × ×

(()) (())

((
sss

w
p

ps

wN
ceil N

N
N

) ())+ ×

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with
configuring the system for parallel computing and loading Simulink software
on the remote MATLAB workers.

The expected speed up for the total estimation time is given by the following
equation:

T
T

ceil N
N
N

ceil N
N
N

N N N
totalP

total

p
ss

w
p

ps

w
p ss ps

=
× + ×

+×

() ()

()

For example, for a model with Np=3, Nw=4, Nss=15, and Nps=2, the expected

speedup equals
ceil ceil() ()

()
.

3
15
4

3
2
4

3 15 2
0 27

× + ×

× +
= .

Using the Pattern search method with parallel computing may not speed
up the estimation time. When you do not use parallel computing, the method
stops searching for a candidate solution at each iteration as soon as it finds a
solution better than the current solution. When you use parallel computing,
the candidate solution search is more comprehensive. Although the number
of iterations may be larger, the estimation without using parallel computing
may be faster.

Related
Examples

• “How to Use Parallel Computing” on page 2-59

2-58

How to Use Parallel Computing

How to Use Parallel Computing

In this section...

“Configure Your System for Parallel Computing” on page 2-59

“Model Dependencies” on page 2-59

“Estimate Parameters Using Parallel Computing (GUI)” on page 2-61

“Estimate Parameters Using Parallel Computing (Code)” on page 2-64

“Troubleshooting” on page 2-65

Configure Your System for Parallel Computing
You can speed up parameter estimation using parallel computing on multicore
processors or multiprocessor networks. You can use parallel computing with
the parameter estimation GUI and sdo.optimize. When you estimate model
parameters using parallel computing, the software uses the available parallel
pool. If no parallel pool is available and Automatically create a parallel
pool is selected in your Parallel Computing Toolbox preferences, then the
software starts a parallel pool using the settings in those preferences.

When you begin estimation, the software automatically detects model
dependencies and temporarily adds them to the parallel pool workers.
However, to ensure that workers are able to access the undetected file and
path dependencies, create a cluster profile that specifies the same. The
parallel pool used for estimation must be associated with this cluster profile.
For information regarding creating a cluster profile, see “Create and Modify
Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies
Model dependencies are any referenced models, data (model variables etc.),
S-functions, and additional files necessary to run the model. Before starting

2-59

2 Parameter Estimation

the optimization, you must verify that all the remote workers can access the
model dependencies. Otherwise, you may get unexpected results.

Making File Dependencies Accessible to Remote Workers
When you use parallel computing, the Simulink Design Optimization software
helps you identify model path dependencies. To do so, the software uses the
Simulink Manifest Tools. However, the dependency analysis may not find all
the files required by your model. For example, folders containing code for your
model or block callbacks may not be detected. To learn more, see “Scope of
Dependency Analysis” in the Simulink documentation.

If your model has undetected file dependencies, then specify them in the Files
and Folders section of the cluster profile.

If your model has path dependencies that are undetected or inaccessible by
the remote workers, then add them to the list of model path dependencies.
For more information, see:

• “Estimate Parameters Using Parallel Computing (GUI)” on page 2-61

• “Estimate Parameters Using Parallel Computing (Code)” on page 2-64

Making Data Dependencies Accessible to Remote Workers
You can check whether a model has access to all its data dependencies,
such as variables required for model initialization. On your local machine,
complete the following steps:

1 Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible
to the model.

3 Simulate the model. If the model errors, a dependency is missing. For
example, if a simulation error occurs because a variable is not defined, you
can correct the problem in one of the following ways:

• Add the variable to the model workspace.

2-60

How to Use Parallel Computing

• Create a MATLAB script that creates the variable, and add the file to
the list of dependencies. Modify the PreLoadFcn callback of the model to
add a call to the MATLAB script.

Estimate Parameters Using Parallel Computing (GUI)
To estimate model parameters using parallel computing in the GUI:

1 Ensure that the software can access parallel pool workers that use the
appropriate cluster profile.

For more information, see “Configure Your System for Parallel Computing”
on page 2-59.

2 Open the parameter estimation GUI for the model.

3 Configure the estimation data, estimation parameters and states, and,
optionally, estimation settings.

For more information, see “Import Data (GUI)” on page 1-4, “Specify
Parameters to Estimate” on page 2-7, and “Estimation Options” on page
2-26.

4 Open the Parallel Options tab.

a In the Estimation tab of the New Estimation node, click Estimation
Options.

2-61

2 Parameter Estimation

b When the Options dialog box opens, click the Parallel Options tab.

5 Select the Use the parallel pool during optimization check box.

This option checks for model path dependencies in your Simulink model and
displays the path dependencies in theModel path dependencies list box.

Note The automatic path dependencies check may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 2-59.

6 (Optional) Add the path dependencies that the automatic check does not
detect.

Specify the paths in the Model path dependencies list box. You can
specify the paths separated with a semicolons or on a new line.

2-62

How to Use Parallel Computing

Alternatively, you can click Add path dependency to open a dialog box,
and select the folder to add.

7 (Optional) In the Model path dependencies list box, update the paths
on local drives to make them accessible to remote workers. For example,
change C:\ to \\\\hostname\\C$\\.

8 (Optional) If you modify the Simulink model such that it introduces a new
path dependency, then resync the path dependencies. Click Sync path
dependencies from model in the Parallel Options tab to rerun the
automatic dependency check for your model.

This action updates theModel path dependencies list box with any new
path dependency found in the model.

9 Click OK.

10 In the Estimation tab, click Start to estimate the model parameters using
parallel computing.

For information on troubleshooting problems related to estimation using
parallel computing, see “Troubleshooting” on page 2-65.

2-63

2 Parameter Estimation

Estimate Parameters Using Parallel Computing (Code)
To use parallel computing for parameter estimation at the command line:

1 Ensure that the software can access parallel pool workers that use the
appropriate cluster profile.

For more information, see “Configure Your System for Parallel Computing”
on page 2-59.

2 Open the model.

3 Configure an estimation experiment.

4 Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;
opt.UseParallel = 'always';

5 Find the model path dependencies.

dirs = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 2-59.

6 (Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')

7 (Optional) Modify dirs to make paths on local drives accessible to remote
workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

8 Add the path dependencies for optimization.

opt.ParallelPathDependencies = dirs;

2-64

How to Use Parallel Computing

9 Run the optimization.

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to estimation using
parallel computing, see “Troubleshooting” on page 2-65.

Troubleshooting

• “Why are the estimation results with and without using parallel computing
different?” on page 2-65

• “Why do I not see the estimation speedup I expected using parallel
computing?” on page 2-66

• “Why does the estimation using parallel computing not make any
progress?” on page 2-66

• “Why do I receive an error "Cannot save model
tpe5468c55_910c_4275_94ef_305e2eeeeef4"?” on page 2-67

• “Why does the estimation using parallel computing not stop when I click
Stop?” on page 2-67

Why are the estimation results with and without using parallel
computing different?

• Different numerical precision on the client and worker machines can
produce marginally different simulation results. Thus, the optimization
method can take a completely different solution path and produce a
different result.

• The client and worker machines must have models in identical states. For
example, you must verify that the model running on the client uses exactly
the same variable values as the workers. You must also verify that the
client and workers are accessing model dependencies in identical states.

• When you use parallel computing with the Pattern search method, the
search is more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern search Method”
on page 2-57.

2-65

2 Parameter Estimation

Why do I not see the estimation speedup I expected using
parallel computing?

• When you estimate a small number of model parameters or when the
model does not take long to simulate, you might not see a speedup in the
estimation time. In such cases, the overhead associated with creating
and distributing the parallel tasks outweighs the benefits of running the
estimation in parallel.

• Using the Pattern search method with parallel computing might not
speed up the optimization time. Without parallel computing, the method
stops the search at each iteration as soon as it finds a solution better than
the current solution. The candidate solution search is more comprehensive
when you use parallel computing. Although the number of iterations might
be larger, the optimization without using parallel computing might be
faster.

To learn more about the expected speedup, see “Parallel Computing with
the Pattern search Method” on page 2-57.

Why does the estimation using parallel computing not make
any progress?
In some cases, the gradient computations on the remote worker machines
may silently error out when you use parallel computing. In such cases, the
Estimation progress table shows that the f(x) values do not change, and
the optimization terminates after two iterations.

To troubleshoot the problem:

1 Run the optimization for a few iterations without parallel computing to
see if the optimization progresses.

2 Check whether the remote workers have access to all model dependencies.
Model dependencies include data variables and files required by the model
to run.

To learn more, see “Model Dependencies” on page 2-59.

2-66

How to Use Parallel Computing

Why do I receive an error "Cannot save model
tpe5468c55_910c_4275_94ef_305e2eeeeef4"?
When you specify the Gradient type as Refined, the software may error out
when it attempts to save a temporary model to a nonwriteable folder. To clear
this error, change the Gradient type to Basic. To learn more, see “Selecting
Additional Optimization Options” on page 2-30.

Why does the estimation using parallel computing not stop
when I click Stop?
When you use parallel computing, the software must wait until the current
optimization iteration completes before it notifies the workers to stop the
optimization. The optimization does not terminate immediately when you
click Stop, and, instead, appears to continue running.

See Also sdo.optimize | sdo.OptimizeOptions | sdo.getModelDependencies |
parpool

Concepts • “Speedup Using Parallel Computing” on page 2-55

2-67

2 Parameter Estimation

Estimating Initial Conditions for Blocks with External
Initial Conditions

When an integrator block uses an initial-condition port, which you specify by
an IC block, you cannot estimate the initial conditions (ICs) of the integrator
using Simulink Design Optimization software. Estimation is not possible
because external ICs have priority over the ICs of a specific block to maintain
the integrity of the model.

To tune the ICs of an integrator block with external ICs, you must modify the
model to make the external signal into a tunable parameter. For example,
you can set the IC block that feeds into the integrator to be a tunable variable
and estimate it.

2-68

Estimate Model Parameters and Initial States (GUI)

Estimate Model Parameters and Initial States (GUI)

In this section...

“Loading the Example” on page 2-69

“Model Parameters” on page 2-70

“Setting Up the Estimation Project” on page 2-71

“Importing Transient Data and Selecting Parameters for Estimation” on
page 2-72

“Selecting Parameters and Initial Conditions for Estimation” on page 2-74

“Creating the Estimation Task” on page 2-76

“Running the Estimation and Viewing Results” on page 2-78

“Related Examples” on page 2-79

This example shows how to estimate the initial states and parameters of
a model.

Loading the Example
To open the Simulink model of a mass-spring-damper system, type:

msd_system

at the MATLAB prompt.

This action also loads the two sets of measured data with differing initial
conditions.

2-69

2 Parameter Estimation

Model Parameters
The output of the Simulink model, msd_system, is the position of the mass in
a mass-spring-damper system. The model is subject to a constant force F, and
an initial condition, x0, for the mass displacement. x0 is the initial condition
of the integrator block, Position.

The model parameters of interest are the mass, m, the viscous damping, b,
and the spring constant, k. For more information about physical modeling of
mass-spring-damper systems, see any book on mathematical modeling or on
automatic control systems.

For estimating the model parameters m, b, and k, this model uses two
experimental data sets. The data sets contain output data measured using
two different initial positions, x0=0.1 and x0=0.3, and additive noise.

In the Simulink editor window, select Simulation > Run to run a simulation.
The simulation generates the following plots, as shown in the next figure:

• Simulated response of the model for x0=-0.1 and parameter values, m=8,
k=500, and b=100

• Experimental data sets

2-70

Estimate Model Parameters and Initial States (GUI)

The magenta and cyan lines show experimental data with different initial
conditions. The yellow line is the model response to a constant force.

Setting Up the Estimation Project
To set up the estimation of initial conditions and then transient state space
data, select Analysis > Parameter Estimation in the msd_system model
window.

2-71

2 Parameter Estimation

Importing Transient Data and Selecting Parameters
for Estimation
To import data for initial state estimation:

1 In the Control and Estimation Tools Manager, select Transient Data
under the Estimation Task node.

2 Right-click Transient Data, and select New to create a New Data node.

3 Select New Data under the Transient Data node.

4 In the Output Data tab of the New Data node, select the Data column
of msd_system/Position, and click Import. The Data Import dialog box
opens.

Select yexp1, and click Import to assign the data yexp1 to the model.

2-72

Estimate Model Parameters and Initial States (GUI)

5 In the Output Data pane, select the Time/Ts column of
msd_system/Position. In the Data Import dialog box, select texp1, and
click Import to assign the time vector texp1 to the model.

6 Right-click New Data in the Workspace tree, and rename it to Data
set #1.

7 Repeat steps 2–5 to add a second data set, yexp2 and texp2. Rename the
data set to Data set #2.

The Control and Estimation Tools Manager GUI now resembles the next
figure.

For more information on importing data, see “Import Data (GUI)” on page 1-4.

2-73

2 Parameter Estimation

Selecting Parameters and Initial Conditions for
Estimation
To select the parameters and initial states you want to estimate for the
Simulink model msd_system:

1 Select the Variables node in the Workspace tree of the Control and
Estimation Tools Manager GUI.

2 In the Estimated Parameters pane, click Add to open the Select
Parameters dialog box.

3 Select the parameters b, k, and m, and then click OK. The selected
parameters now appear in the Selected parameters area of the
Estimated Parameters pane.

2-74

Estimate Model Parameters and Initial States (GUI)

4 In the Estimated States pane, click Add.

The Select States dialog box opens, which displays all the available states
of the msd_system model. Select msd_system/Position, and click OK.

���������	����
�����
���	�
��
�����
����	������
	
�
��������	���
�������

��������	
�����
��������������������
����������	��	��
����	����
�������

�������	
�����
��������������������

�
�	��	��
����	����

2-75

2 Parameter Estimation

Note For states that you do not estimate, the software uses the initial
condition value specified in the Simulink model. In this example, the value
of initial velocity, as specified in the model is 0.

The selected state appears in the Selected states area of the Estimated
States pane, as shown in the next figure.

For more information on selecting parameters to estimate, see “Specify
Parameters to Estimate” on page 2-7.

Creating the Estimation Task
To create an estimation task in the Control and Estimation Tools Manager
GUI, select the Estimation node in the Workspace tree, and click New.
This action creates a New Estimation node.

2-76

Estimate Model Parameters and Initial States (GUI)

In the New Estimation node, select the following check boxes:

• Data Set #1 and Data Set #2 in the Data Sets pane.

• Estimate for b, k, and m in the Parameters pane.

• Estimate for Position in the States pane. Make sure to select this check
box for both Data Set #1 and Data Set #2 to estimate the initial position
for the spring.

Although the initial positions for the two data sets differ, specify the initial
state guesses for both data sets as -0.1. The Control and Estimation Tools
Manager GUI now resembles the following figure.

2-77

2 Parameter Estimation

Running the Estimation and Viewing Results
Click Start in the Estimation pane to run the estimation.

As the estimation proceeds, the most current estimation of the position
response (yellow curve) updates in the Scope. The curve toggles between
the two experimental data sets because the software uses the two data sets
successively to update the estimates of the parameter values. The software
converges to the correct parameter values, within the scope of experimental
noise and optimization options settings. The closeness of the estimated
response (yellow) to the experimental data (magenta) indicates that simulated
data is a good match to the measured data.

View the initial position estimates for Data Set #1 and Data Set #2 in the
Value column of the States tab. The estimated values match closely with
the known values, 0.1 and 0.3 of initial position.

2-78

Estimate Model Parameters and Initial States (GUI)

View the estimated parameter values in the Value column of the Parameters
tab.

The estimation of initial states is important for obtaining the correct
estimates of the model parameters. You do not set the initial states (x0 in this
case) as parameters because the initial states do not represent fixed physical
properties of the system. For different experimental data or operating
conditions, these states need not be unique.

In this example, you use two data sets with distinct initial positions together
for a single estimation of model parameters. While the estimates of the
model parameters are unique, the initial state (position) is different, and you
estimate them individually for each data set.

Related Examples

• “Estimate Model Parameters and Initial States (GUI)”

2-79

2 Parameter Estimation

Estimation Projects

In this section...

“Structure of an Estimation Project” on page 2-80

“Managing Multiple Projects and Tasks” on page 2-81

“Adding, Deleting and Renaming an Estimation Project” on page 2-82

“Saving Control and Estimation Tools Manager Projects” on page 2-83

“Loading Control and Estimation Tools Manager Projects” on page 2-84

Structure of an Estimation Project
The Control and Estimation Tools Manager, which is a graphical user
interface (GUI) for performing parameter estimation, stores and organizes all
data from a given Simulink model inside a project. To open the Control and
Estimation Tools Manager GUI, select Analysis > Parameter Estimation
in the Simulink model window.

When using the Control and Estimation Tools Manager for parameter
estimation, you can

• Manage estimation projects.

• Select parameters and initial conditions to configure the estimation.

• Specify cost functions.

• Import experimental data (to be matched by the output of your Simulink
model).

• Specify the initial conditions of your model.

Each estimation task can include

• One or more data sets

• Parameter information

• One or more sets of estimation settings, or configurations

2-80

Estimation Projects

The default project name is the same as the Simulink model name. The
project name is shown in the Workspace tree of the Control and Estimation
Tools Manager.

You can also add tasks from Simulink Control Design™ and Model Predictive
Control Toolbox™ software to the current project, if these products are
installed on your system.

Managing Multiple Projects and Tasks
The Control and Estimation Tools Manager works seamlessly with products
in the Controls and Estimation family. In particular, if you have licenses for
Simulink Control Design or Model Predictive Control Toolbox software, you
can use these products to perform tasks on projects that you have created in
Simulink Design Optimization software, and vice versa.

This figure shows a tools manager with multiple projects and multiple tasks.

2-81

http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/mpc/
http://www.mathworks.com/products/mpc/

2 Parameter Estimation

You can save projects individually, or group multiple projects together in
one saved file, as described in:

• “Saving Control and Estimation Tools Manager Projects” on page 2-83

• “Loading Control and Estimation Tools Manager Projects” on page 2-84

Adding, Deleting and Renaming an Estimation Project
To add, delete, or rename the project or task:

1 Right-click the project or task node in the Workspace tree.

2 Select the appropriate command from the shortcut menu.

2-82

Estimation Projects

Saving Control and Estimation Tools Manager
Projects
A Control and Estimation Tools Manager project can consist of tasks from
products such as Simulink Control Design, Simulink Design Optimization,
and Model Predictive Control Toolbox software. Each task contains data,
objects, and results for the analysis of a particular model.

To save your project as a MAT-file, select File > Save in the Control and
Estimation Tools Manager window.

To save multiple projects within one file:

1 In the Save Projects dialog box, select the projects that you want to save.

2 Click OK.

3 Choose a folder and name for your project file by either browsing for a file
or typing the full path and filename in the Save as field. Click Save.

2-83

2 Parameter Estimation

Loading Control and Estimation Tools Manager
Projects
To open previously saved projects, select File > Load in the Control and
Estimation Tools Manager window.

In the Load Projects dialog box, choose a project file by either browsing for
the folder and file, or by typing the full path and filename in the Load from
field. Project files are always MAT-files. The projects within this file appear
in the Projects list.

Select the projects that you want to load, then click OK. When a file contains
multiple projects, you can choose to load them all or just a few.

2-84

How the Software Formulates Parameter Estimation as an Optimization Problem

How the Software Formulates Parameter Estimation as an
Optimization Problem

In this section...

“Overview of Parameter Estimation as an Optimization Problem” on page
2-85

“Cost Function” on page 2-85

“Bounds and Constraints” on page 2-88

“Optimization Methods and Problem Formulations” on page 2-89

Overview of Parameter Estimation as an
Optimization Problem
When you perform parameter estimation, the software formulates an
optimization problem. The optimization problem solution is the estimated
parameter values set. This optimization problem consists of:

• x — Design variables. The model parameters and initial states to be
estimated.

• F(x) — Objective function. A function that calculates a measure of the
difference between the simulated and measured responses. Also called cost
function or estimation error.

• (Optional) x x x  — Bounds. Limits on the estimated parameter values.

• (Optional) C(x) — Constraint function. A function that specifies restrictions
on the design variables.

The optimization solver tunes the values of the design variables to satisfy the
specified objectives and constraints. The exact formulation of the optimization
depends on the optimization method that you use.

Cost Function

• “Types” on page 2-86

• “Time Base” on page 2-87

2-85

2 Parameter Estimation

The software tunes the model parameters to obtain a simulated response
(ysim) that tracks the measured response or reference signal (yref). To do so,
the solver minimizes the cost function or estimation error, a measure of the
difference between the simulated and measured responses. The cost function,
F(x), is the objective function of the optimization problem.

Types
The raw estimation error, e(t), is defined as:

e t y t y tref sim() (()) 

e(t) is also referred to as the error residuals or, simply, residuals.

Simulink Design Optimization software provides you the following cost
functions to process e(t):

Cost Function Formulation Option Name in GUI
or Command Line

Sum squared error
(default)

F x e t e t
t

tN

() () () 



0

N is the number of
samples.

'SSE'

Sum absolute error

F x e t
t

tN

() | ()|



0

N is the number of
samples.

'SAE'

2-86

How the Software Formulates Parameter Estimation as an Optimization Problem

Cost Function Formulation Option Name in GUI
or Command Line

Raw error

F x
e

e N
()

()

()

















0


N is the number of
samples.

'Residuals'This
option is available
only at the command
line.

Custom function N/A This option is available
only at the command
line.

Time Base
The software evaluates the cost function for a specific time interval. This
interval is dependent on the measured signal time base and the simulated
signal time base.

• The measured signal time base consists of all the time points for which the
measured signal is specified. In case of multiple measured signals, this
time base is the union of the time points of all the measured signals.

• The simulated signal time base consists of all the time points for which the
model is simulated.

If the model uses a variable-step solver, then the simulated signal time base
can change from one optimization iteration to another. The simulated and
measured signal time bases can be different. The software evaluates the
cost function for only the time interval that is common to both. By default,
the software uses only the time points specified by the measured signal in
the common time interval.

• In the GUI, you can specify the simulation start and stop times in the
Simulation time area of the Simulation Options dialog box.

• At the command line, the software specifies the simulation stop time as the
last point of the measured signal time base. For example, the following
code simulates the model until the end time of the longest running output
signal of exp, an sdo.Experiment object:

sim_obj = createSimulator(exp);

2-87

2 Parameter Estimation

sim_obj = sim(sim_obj);

sim_obj contains the simulated response for the model associated with exp.

Bounds and Constraints
You can specify bounds for the design variables (estimated model parameters),
based on your knowledge of the system. Bounds are expressed as:

x x x 

x and x are the lower and upper bounds for the design variables.

For example, in a battery discharging experiment, the estimated battery
initial charge must be greater than zero and less than Inf. These bounds
are expressed as:

0   x

For an example of how to specify these types of bounds, see “Estimate Model
Parameters and Initial States (Code)” on page 2-115.

You can also specify other constraints, C(x), on the design variables at the
command line. C(x) can be linear or nonlinear and can describe equalities or
inequalities. C(x) can also specify multiparameter constraints. For example,
for a simple friction model, C(x) can specify that the static friction coefficient
must be greater than or equal to the dynamic friction coefficient. One way of
expressing this constraint is:

C x x x

C x

() :

()
1 2

0




x1 and x2 are the dynamic and static friction coefficients, respectively.

For an example of how to specify a constraint, see “Estimate Model
Parameters with Parameter Constraints (Code)” on page 2-148.

2-88

How the Software Formulates Parameter Estimation as an Optimization Problem

Optimization Methods and Problem Formulations
An optimization problem can be one of the following types:

• Minimization problem — Minimizes an objective function, F(x). You specify
the measured signal that you want the model output to track. You can
optionally specify bounds for the estimated parameters.

• Mixed minimization and feasibility problem — Minimizes an objective
function, F(x), subject to specified bounds and constraints,C(x). You specify
the measured signal that you want the model to track and bounds and
constraints for the estimated parameters.

• Feasibility problem — Finds a solution that satisfies the specified
constraints, C(x). You specify only bounds and constraints for the estimated
parameters. This type of problem is not common in parameter estimation.

The optimization method that you specify determines the formulation of
the estimation problem. The software provides the following optimization
methods:

Optimization Method
Name

Description Optimization
Problem Formulation

• User interface:
Nonlinear Least
Squares

• Command line:
'lsqnonlin'

Minimizes the squares
of the residuals,
recommended method
for parameter
estimation.

This method requires
a vector of error
residuals, computed
using a fixed time
base. Do not use this
approach if you have a
scalar cost function or
if the number of error
residuals can change
from one iteration to
another.

Minimization
Problem

min min x f x

x x x

F x f

s t
x x

()

. .

() ()2
2

1
2

2
2   

 

f1(x), f2(x),...,fn(x)
represent residuals.
n is the number of
samples.

Mixed Minimization
and Feasibility
Problem

Not supported.

2-89

2 Parameter Estimation

Optimization Method
Name

Description Optimization
Problem Formulation

This method uses the
Optimization Toolbox
function, lsqnonlin.

Feasibility Problem

Not supported.

• User interface:
Gradient Descent

• Command line:
'fmincon'

General nonlinear
solver, uses the cost
function gradient.

Use this approach if
you want to specify one
or any combination of
the following:

• Custom cost
functions

• Parameter-based
constraints

• Signal-based
constraints

This method uses the
Optimization Toolbox
function, fmincon.

For information on
how the gradient
is computed,
see “Gradient
Computations” on
page 2-103.

Minimization
Problem

min ()

. .
x

F x

s t x x x

 ≤ ≤

Mixed Minimization
and Feasibility
Problem

min ()

. . ()
x

F x

s t C x
x x x

≤
≤ ≤

0

Note When tracking
a reference signal, the
software ignores the
maximally feasible
solution option.

Feasibility Problem

• If you select the
maximally feasible
solution option (i.e.,
the optimization
continues after
an initial feasible

2-90

How the Software Formulates Parameter Estimation as an Optimization Problem

Optimization Method
Name

Description Optimization
Problem Formulation

solution is found),
the software uses the
following problem
formulation:

min

. . ()

,x

s t C x
x x x








 


 


 0

γ is a slack variable
that permits a
feasible solution
with C(x) ≤ γ rather
than C(x) ≤ 0.

• If you do not select
the maximally
feasible solution
option (i.e., the
optimization
terminates as soon as
a feasible solution is
found), the software
uses the following
problem formulation:

min

. . ()
x

s t C x
x x x

 0


 

0

2-91

2 Parameter Estimation

Optimization Method
Name

Description Optimization
Problem Formulation

• User interface:
Simplex Search

• Command line:
'fminsearch'

Based on the
Nelder-Mead
algorithm, this
approach does not
use the cost function
gradient.

Use this approach
if your cost function
or constraints are
not continuous or
differentiable.

This method uses the
Optimization Toolbox
functions, fminsearch
and fminbnd. fminbnd
is used if one scalar
parameter is being
optimized. Otherwise,
fminsearch is used.
You cannot specify
parameter bounds,

x x x≤ ≤ , with
fminsearch.

Minimization
Problem

min ()
x

F x

Mixed Minimization
and Feasibility
Problem

The software
formulates the problem
in two steps:

1 Finds a feasible
solution.

min
x

C x max ()()

2 Minimizes the
objective. The
software uses the
results from step 1
as initial guesses. It
maintains feasibility
by introducing
a discontinuous
barrier in the
optimization
objective.

2-92

How the Software Formulates Parameter Estimation as an Optimization Problem

Optimization Method
Name

Description Optimization
Problem Formulation

min

()
inf max ()
()

x
x

where

x
if C x

F x otherwise

 Γ

Γ

()

= () >⎧
⎨
⎩

0

Feasibility Problem

min
x

C x max ()()

• User interface:
Pattern Search

• Command line:
'patternsearch'

Direct search
method, based on
the generalized pattern
search algorithm, this
method does not use the
cost function gradient.

Use this approach
if your cost function
or constraints are
not continuous or
differentiable.

This method uses the
Global Optimization
Toolbox function,
patternsearch.

Minimization
Problem

min ()

. .
x

F x

s t x x x

 ≤ ≤

Mixed Minimization
and Feasibility
Problem

The software
formulates the problem
in two steps:

1 Finds a feasible
solution.

min

. .
x

C x

s t x x x

 max

()()

≤ ≤

2 Minimizes the
objective. The
software uses the

2-93

2 Parameter Estimation

Optimization Method
Name

Description Optimization
Problem Formulation

results from step 1
as initial guesses. It
maintains feasibility
by introducing
a discontinuous
barrier in the
optimization
objective.

min ()

. .

()
inf max ()
()

x
x

s t x x x
where

x
if C x

F x other

Γ

Γ

≤ ≤

= () > 0
wwise

⎧
⎨
⎩

Feasibility Problem

min

. .
x

C x

s t x x x

 max

()()

≤ ≤

See Also sdo.SimulationTest | sdo.Experiment |
sdo.requirements.SignalTracking | sdo.requirements.SignalTracking
| lsqnonlin | fmincon | fminsearch | fminbnd | patternsearch

Related
Examples

• “Estimate Model Parameter Values (Code)” on page 2-104
• “Estimate Model Parameters with Parameter Constraints (Code)” on page
2-148
• “Estimate Parameters from Measured Data (GUI)”

Concepts • “Writing a Cost Function” on page 2-95

2-94

Writing a Cost Function

Writing a Cost Function

In this section...

“Cost Function Overview” on page 2-95

“Convenience Objects” on page 2-96

“Inputs” on page 2-98

“Evaluate Requirements” on page 2-99

“Outputs” on page 2-100

Cost Function Overview
When you use sdo.optimize to optimize model parameters (design variables),
you must provide a MATLAB function as an input to sdo.optimize. This
function, also called a cost function, must evaluate the cost and constraint
values for the design variable values for an iteration. (The cost and constraint
functions are collectively referred to as requirements.) sdo.optimize calls
this function at every optimization iteration and use the function output to
decide the optimization direction.

The cost function can also be used for global sensitivity analysis. You generate
samples of the model parameters and evaluate the cost function for each
sample using sdo.evaluate.

The cost function must have:

• Input — params , a vector of the design variables (param.Continuous
objects) to be optimized.

• Output:

- (Required) vals , a structure with one or more fields that specify the
values of the cost and constraint violations.

- (Optional) derivs, a structure with one or more fields that specify the
values of the gradients of the cost and constraint violations.

You perform the following tasks within the function:

2-95

2 Parameter Estimation

• Extract the current design variable values from params.

• If the simulated response is required for evaluating the requirements, then
simulate the model using the current design variable values.

• Evaluate the requirements.

• Specify the requirement values as fields of vals.

To use a cost function with sdo.optimize, enter:

[param_opt,opt_info] = sdo.optimize(@myCostFunc,param)

Here, myCostFunc is the name of the MATLAB function and param is a vector
of the design variables.

Similarly, to use a cost function with sdo.evaluate, enter:

[y,info] = sdo.evaluate(@myCostFunc,param)

Convenience Objects
The software provides you with the following convenience objects that can you
can use in the cost function:

Class Name Description

sdo.SimulationTest Use an sdo.SimulationTest object,
also referred to as a simulator, to
simulate a model. The simulator
allows you to simulate the model
using alternative inputs, model
parameter and initial-state values,
without modifying the model.

You configure the simulator to
log the signals needed to evaluate
requirements and use the sim
method to simulate the model. Then,
you extract the model response

2-96

Writing a Cost Function

Class Name Description

from the object and evaluate the
requirements.

Requirements objects:

Time-domain requirements:

• sdo.requirements.SignalBound

• sdo.requirements.StepResponseEnvelope

• sdo.requirements.SignalTracking

Frequency-domain requirements:

• sdo.requirements.GainPhaseMargin

• sdo.requirements.BodeMagnitude

• sdo.requirements.ClosedLoopPeakGain

• sdo.requirements.PZDampingRatio

• sdo.requirements.PZNaturalFrequency

• sdo.requirements.PZSettlingTime

• sdo.requirements.SignalTracking

• sdo.requirements.StepResponseEnvelope

• sdo.requirements.OpenLoopGainPhase

Use these requirements objects to
specify time- and frequency-domain
costs or constraints on the design
variables.

You configure the properties of the
object and then use the object’s
evalRequirement method to
evaluate how closely the current
design variables satisfy your design
requirement.

sdo.Experiment Use an sdo.Experiment object, also
referred to as simply an experiment,
to specify the input/output data,
model parameter and initial-state
values for parameter estimation.

You update the design
variable values associated
with the experiment using the
setEstimatedValues method.
Then, you create a simulator, using

2-97

2 Parameter Estimation

Class Name Description

the createSimulator method,
to simulate the model using the
updated model configuration.

Inputs

• “Model Parameters and States” on page 2-98

• “Multiple Inputs” on page 2-98

Model Parameters and States
The function must take as input a vector of model parameter objects
(param.Continuous objects) and, optionally, initial-state objects (param.State
objects). These objects represent the design variables of the optimization
problem. You obtain these objects by using the sdo.getParameterFromModel
and sdo.getStateFromModel commands.

To access a design variable value, use:

param_val = p(1).Value;

Here, p is a vector of param.Continuous objects and p(1) is either a model
parameter or an initial-state object.

Multiple Inputs
sdo.optimize requires that the cost function accept only one input argument,
params. However, you might want to use additional inputs. For instance, you
could make the model name an input argument and configure the function to
be used for multiple models. To call sdo.optimize and use a function that
accepts more than one input argument, you use an anonymous function. For
example, suppose myCostFunc_mult_inputs is a cost function that takes
param, arg1, and arg2 as inputs. Then, assuming that all input arguments
are variables in the workspace, you enter:

myCostFunc = @(param) myCostFunc_mult_inputs(param,arg1,arg2);
[param_opt,opt_info] = sdo.optimize(@myCostFunc,param);

2-98

Writing a Cost Function

Additional inputs can also help reduce code redundancy and computation
cost, given that the function is called repeatedly by sdo.optimize during
optimization. For instance, if you use a convenience object in your function,
you can create it once, before calling sdo.optimize. Then, you can modify
the convenience object’s properties as required within the function for each
iteration.

Evaluate Requirements
The core of the function is where you evaluate how well the current design
variables satisfy the design requirements. You can use MATLAB functions
to do so. You can also use the requirements objects that the Simulink
Design Optimization software provides. These objects enable you to specify
requirements such as step-response characteristics, gain/phase margin
bounds, Bode magnitude bounds, etc.

• Parameter-only requirements — Extract the design variable values and
compute the requirement values.

For example, you can minimize the cylinder cross-sectional area, a design
variable, in a hydraulic cylinder. See “Design Optimization to Meet a
Custom Objective (Code)” on page 3-112.

• Model response-based requirements — Simulate the model using the
current design variable values, extract the model response, and compute
the requirement values.

There are multiple ways to simulate the model, including:

- Using an sdo.SimulationTest object. You update the model parameter
values using the simulator’s Parameters property. Then, you use the sim
method to simulate the model and extract the logged signals from the
simulator that are of interest. For an example, see “Design Optimization
to Meet a Custom Objective (Code)” on page 3-112.

In parameter estimation, you can use the createSimulator method of
the sdo.Experiment object to create the simulator. Before creating the
simulator, you update the experiment with the current design variable
values using the setEstimatedValues method. For an example, see
“Estimate Model Parameters Per Experiment (Code)” on page 2-136

- Using sdo.setValueInModel to update the model and then calling sim
to simulate the model.

2-99

2 Parameter Estimation

• Linear model-based requirements — Update the model with the current
design variable values, linearize the model, and compute the requirement
values.

Use sdo.setValueInModel to update the model and functions such as
linmod or linearize to linearize the model. linearize requires a
Simulink Control Design license.

Outputs

• “Cost and Constraint Values” on page 2-100

• “Multiple Objectives” on page 2-101

Cost and Constraint Values
Your function must return a structure containing the cost and constraint
values for the current design variables. This structure must have one or more
of the following fields, as required by your optimization problem:

• F — Cost value.

• Cleq, Ceq — Nonlinear constraint values. The solver satisfies Cleq ≤
0 and Ceq = 0.

• leq, eq— Linear constraint values. The solver satisfies leq ≤ 0 and eq = 0.

If you have multiple constraints of one type, concatenate the values into a
vector, and specify this vector as the corresponding field value. For instance,
if you have a hydraulic cylinder, you can specify nonlinear inequality
constraints on the piston position (Cleq1) and cylinder pressure (Cleq2). In
this case, specify the Cleq field of the output structure, vals, as:

vals.Cleq = [Cleq1; Cleq2];

For an example, see “Design Optimization to Meet a Custom Objective (Code)”
on page 3-112.

By default, the software computes the cost and constraint gradients using
numeric perturbation. However, you can specify the gradients and return
them as an additional output. This output must be a structure with one or
more of the following fields, as required by your optimization problem:

2-100

Writing a Cost Function

• F — Cost derivatives.

• Cleq — Nonlinear inequality constraints derivatives.

• Ceq — Nonlinear equality constraints derivatives.

You must also set the GradFcn property of the optimization option set to 'on'.

Multiple Objectives
Simulink Design Optimization does not support multi-objective optimization.
However, you can return the cost value (F) as a vector, representing the
multiple objective values. Using this approach does not halt the optimization.
Instead, the software sums the elements of the vector and minimizes this sum.
The exception to this behavior is if you are using the nonlinear least squares
(lsqnonlin) optimization method. The nonlinear least squares method, used
for parameter estimation, requires that you return the error residuals as a
vector. In this case, the software minimizes the sum square of this vector.

If you are tracking multiple signals and using lsqnonlin, then you must
concatenate the error residuals for the different signals into one vector.
Specify this vector as the F field value.

For an example of single objective optimization using the gradient descent
method, see “Design Optimization to Meet a Custom Objective (Code)” on
page 3-112.

For an example of multiple objective optimization using the nonlinear least
squares method, see “Estimate Model Parameters Per Experiment (Code)” on
page 2-136.

See Also sdo.optimize | sdo.OptimizeOptions | sdo.setValueInModel |
param.Continuous | sdo.SimulationTest | sdo.Experiment

Related
Examples

• “Design Optimization to Meet a Custom Objective (Code)” on page 3-112
• “Estimate Model Parameter Values (Code)” on page 2-104

Concepts • “How the Optimization Algorithm Formulates Minimization Problems”
on page 3-3

2-101

2 Parameter Estimation

• “How the Software Formulates Parameter Estimation as an Optimization
Problem” on page 2-85

2-102

Gradient Computations

Gradient Computations
For the Gradient descent (fmincon) optimization solver, the gradients are
computed using numerical perturbation:

dx eps x x

dL x dx x

dR x d

typical  







  
 

3 1
10

max | |,

max ,

min
min

xx x

F opt fcn dL

F opt fcn dR

dF
dx

F F

dL dR

L

R

L R

,

_ ()

_ ()

max 




 
 

• x is a scalar design variable.

• xmin is the lower bound of x.

• xmax is the upper bound of x.

• xtypical is the scaled value of x.

• opt_fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost
function you write for performing design optimization programmatically. See
sdo.optimize and GradFcn of sdo.OptimizeOptions for more information.

See Also fmincon

Concepts • “How the Software Formulates Parameter Estimation as an Optimization
Problem” on page 2-85
• “How the Optimization Algorithm Formulates Minimization Problems”
on page 3-3

2-103

2 Parameter Estimation

Estimate Model Parameter Values (Code)
This example shows how to use experimental data to estimate model
parameter values.

Aircraft Model

The Simulink model, sdoAircraftEstimation, models the longitudinal flight
control system of an aircraft.

open_system('sdoAircraftEstimation')
close(findall(0,'Type','figure','Tag','SIMULINK_SIMSCOPE_FIGURE'))

Estimation Problem

You use measured data to estimate the aircraft model parameters and states.

Measured output data:

• Pilot G force, output of the Pilot G-force calculation block

• Angle of attack, fourth output of the Aircraft Dynamics Model block

Parameters:

• Actuator time constant, Ta, used by the Actuator Model block

• Vertical velocity, Zd, used by the Aircraft Dynamics Model block

• Pitch rate gains, Md, used by the Aircraft Dynamics Model block

State:

• Initial state of the first-order actuator model,
sdoAircraftEstimation/Actuator Model

Define the Estimation Experiment

Get the measured data.

2-104

Estimate Model Parameter Values (Code)

[time,iodata] = sdoAircraftEstimation_Experiment;

The sdoAircraftEstimation_Experiment function returns the measured
output data, iodata, and the corresponding time vector. The first column of
iodata is the pilot G force and the second column is the angle of attack.

To see the code for this function, type edit
sdoAircraftEstimation_Experiment.

Create an experiment object to store the measured input/output data.

Exp = sdo.Experiment('sdoAircraftEstimation');

Create an object to store the measured pilot G-Force output.

PilotG = Simulink.SimulationData.Signal;
PilotG.Name = 'PilotG';
PilotG.BlockPath = 'sdoAircraftEstimation/Pilot G-force calculation';
PilotG.PortType = 'outport';
PilotG.PortIndex = 1;
PilotG.Values = timeseries(iodata(:,2),time);

Create an object to store the measured angle of attack (alpha) output.

AoA = Simulink.SimulationData.Signal;
AoA.Name = 'AngleOfAttack';
AoA.BlockPath = 'sdoAircraftEstimation/Aircraft Dynamics Model';
AoA.PortType = 'outport';
AoA.PortIndex = 4;
AoA.Values = timeseries(iodata(:,1),time);

Add the measured pilot G-Force and angle of attack data to the experiment
as the expected output data.

Exp.OutputData = [...
PilotG; ...
AoA];

Add the initial state for the Actuator Model block to the experiment. Set its
Free field to true so that it is estimated.

2-105

2 Parameter Estimation

Exp.InitialStates = sdo.getStateFromModel('sdoAircraftEstimation','Actuator
Exp.InitialStates.Minimum = 0;
Exp.InitialStates.Free = true;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated
output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the pilot G-Force and angle of attack signals in the logged
simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation',
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

plot(time, iodata, ...
AoASignal.Values.Time,AoASignal.Values.Data,'--', ...
PilotGSignal.Values.Time,PilotGSignal.Values.Data,'-.');

title('Simulated and Measured Responses Before Estimation')
legend('Measured angle of attack', 'Measured pilot g force', ...

'Simulated angle of attack', 'Simulated pilot g force');

Specify the Parameters to Estimate

Select the model parameters that describe the flight control actuation
system. Specify bounds for the estimated parameter values based on our
understanding of the actuation system.

p = sdo.getParameterFromModel('sdoAircraftEstimation',{'Ta','Md','Zd'});
p(1).Minimum = 0.01; %Ta
p(1).Maximum = 1;

2-106

Estimate Model Parameter Values (Code)

p(2).Minimum = -10; %Md
p(2).Maximum = 0;
p(3).Minimum = -100; %Zd
p(3).Maximum = 0;

Get the actuator initial state value that is to be estimated from the
experiment.

s = getValuesToEstimate(Exp);

Group the model parameters and initial states to be estimated together.

v = [p;s]

v(1,1) =

Name: 'Ta'
Value: 0.5000

Minimum: 0.0100
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]

v(2,1) =

Name: 'Md'
Value: -1

Minimum: -10
Maximum: 0

Free: 1
Scale: 1
Info: [1x1 struct]

v(3,1) =

Name: 'Zd'

2-107

2 Parameter Estimation

Value: -80
Minimum: -100
Maximum: 0

Free: 1
Scale: 128
Info: [1x1 struct]

v(4,1) =

Name: 'sdoAircraftEstimation/Actuator
Model'

Value: 0
Minimum: 0
Maximum: Inf

Free: 1
Scale: 1

dxValue: 0
dxFree: 1

Info: [1x1 struct]

4x1 param.Continuous

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation
output, generated using the estimated parameter values, matches the
measured data.

Use an anonymous function with one input argument that calls the
sdoAircraftEstimation_Objective function. We pass the anonymous
function to sdo.optimize, which evaluates the function at each optimization
iteration.

estFcn = @(v) sdoAircraftEstimation_Objective(v,Exp);

The sdoAircraftEstimation_Objective function:

2-108

Estimate Model Parameter Values (Code)

• Has one input argument that specifies the actuator parameter values and
the actuator initial state.

• Has one input argument that specifies the experiment object containing
the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoAircraftEstimation_Objective function requires two inputs, but
sdo.optimize requires a function with one input argument. To work around
this, estFcn is an anonymous function with one input argument, v, but it calls
sdoAircraftEstimation_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see "Anonymous
Functions".

The sdo.optimize command minimizes the return argument of the
anonymous function estFcn, that is, the residual errors returned by
sdoAircraftEstimation_Objective. For more details on how to write an
objective/constraint function to use with the sdo.optimize command, type
help sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoAircraftEstimation_Objective at the MATLAB command prompt.

type sdoAircraftEstimation_Objective

function vals = sdoAircraftEstimation_Objective(v,Exp)
%SDOAIRCRAFTESTIMATION_OBJECTIVE
%
% The sdoAircraftEstimation_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoAircraftEstimation_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Exp| input argument contains the estimation experiment data.

2-109

2 Parameter Estimation

%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction,
% sdoAircraftEstimation_cmddemo
%

% Copyright 2012 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation',
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

PilotGError = evalRequirement(r,PilotGSignal.Values,Exp.OutputData(1).Value
AoAError = evalRequirement(r,AoASignal.Values,Exp.OutputData(2).Values);

2-110

Estimate Model Parameter Values (Code)

%%
% Return the residual errors to the optimization solver.
%
vals.F = [PilotGError(:); AoAError(:)];
end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values
and initial state.

Specify the optimization options. The estimation function
sdoAircraftEstimation_Objective returns the error residuals between
simulated and experimental data and does not include any constraints,
making this problem ideal for the ’lsqnonlin’ solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 18-Jan-2014 17:14:28

Step-size First-order
Iter F-count f(x) optimality

0 9 27972.2 1
1 18 10124.8 0.4744 5.69e+04
2 27 3128.4 0.3854 1.24e+04
3 36 872.772 0.4288 2.81e+03
4 45 238.635 0.5157 618
5 54 71.6214 0.4934 147
6 63 16.8765 0.4271 43.6
7 72 1.82856 0.2932 11.4
8 81 0.0443162 0.1352 1.49
9 90 0.0010707 0.02918 0.301

10 99 0.0010707 0.008147 0.301

2-111

2 Parameter Estimation

11 108 0.000803483 0.002037 0.135
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative t
its initial value is less than the selected value of the function tolerance

vOpt(1,1) =

Name: 'Ta'
Value: 0.0500

Minimum: 0.0100
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]

vOpt(2,1) =

Name: 'Md'
Value: -6.8857

Minimum: -10
Maximum: 0

Free: 1
Scale: 1
Info: [1x1 struct]

vOpt(3,1) =

Name: 'Zd'
Value: -63.9966

Minimum: -100
Maximum: 0

Free: 1
Scale: 128
Info: [1x1 struct]

vOpt(4,1) =

2-112

Estimate Model Parameter Values (Code)

Name: 'sdoAircraftEstimation/Actuator
Model'

Value: 2.2681e-04
Minimum: 0
Maximum: Inf

Free: 1
Scale: 1

dxValue: 0
dxFree: 1

Info: [1x1 struct]

4x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model using the updated experiment and compare the simulated
output with the experimental data.

The model response using the estimated parameter values closely matches
the experiment output data.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoAircraftEstimation',
PilotGSignal = find(SimLog,'PilotG');
AoASignal = find(SimLog,'AngleOfAttack');

plot(time, iodata, ...
AoASignal.Values.Time,AoASignal.Values.Data,'-.', ...
PilotGSignal.Values.Time,PilotGSignal.Values.Data,'--')

title('Simulated and Measured Responses After Estimation')
legend('Measured angle of attack', 'Measured pilot g force', ...

'Simulated angle of attack', 'Simulated pilot g force');

2-113

2 Parameter Estimation

Update the Model Parameter Values

Update the model with the estimated actuator parameter values. Do not
update the model actuator initial state (fourth element of vOpt) as it is
dependent on the experiment.

sdo.setValueInModel('sdoAircraftEstimation',vOpt(1:3));

Close the model

bdclose('sdoAircraftEstimation')

2-114

Estimate Model Parameters and Initial States (Code)

Estimate Model Parameters and Initial States (Code)
This example shows how to estimate the initial state and parameters of
a model.

This example requires Simscape®.

RC Circuit Model

The Simulink model, sdoRCCircuit, models a simple resistor-capacitor (RC)
circuit.

open_system('sdoRCCircuit');

Estimation Problem

You use the measured data to estimate the RC model parameter and state
values.

Measured output data:

• Capacitor voltage, output of the PS-Simulink Converter block

Parameter:

• Capacitance, C1, used by the C1 block

State:

• Initial voltage of the capacitor, C1

Define the Estimation Experiment

Get the measured data.

load sdoRCCircuit_ExperimentData

2-115

2 Parameter Estimation

The variables time and data are loaded into the workspace, where data is the
measured capacitor voltage for times time.

Create an experiment object to store the experimental voltage data.

Exp = sdo.Experiment('sdoRCCircuit');

Create an object to store the measured capacitor voltage output.

Voltage = Simulink.SimulationData.Signal;
Voltage.Name = 'Voltage';
Voltage.BlockPath = 'sdoRCCircuit/PS-Simulink Converter';
Voltage.PortType = 'outport';
Voltage.PortIndex = 1;
Voltage.Values = timeseries(data,time);

Add the measured capacitor data to the experiment as the expected output
data.

Exp.OutputData = Voltage;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated
output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLo
Voltage = find(SimLog,'Voltage');

Plot the measured and simulated data.

The model response does not match the experimental output data.

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses Before Estimation')
legend('Measured Voltage','Simulated Voltage')

2-116

Estimate Model Parameters and Initial States (Code)

Specify the Parameters to Estimate

Select the capacitance parameter from the model. Specify an initial guess for
the capacitance value (460 uF) and a minimum bound (0 F).

p = sdo.getParameterFromModel('sdoRCCircuit','C1');
p.Value = 460e-6;
p.Minimum = 0;

Define the Estimation Objective Function

Create an estimation objective function to evaluate how closely the simulation
output, generated using the estimated parameter value, matches the
measured data.

Use an anonymous function with one input argument that calls the
sdoRCCircuit_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoRCCircuit_Objective(v,Exp);

The sdoRCCircuit_Objective function:

• Has one input argument that specifies the estimated circuit capacitance
value.

• Has one input argument that specifies the experiment object containing
the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoRCCircuit_Objective function requires two inputs, but
sdo.optimize requires a function with one input argument. To work around
this, estFcn is an anonymous function with one input argument, v, but it calls
sdoRCCircuit_Objective using two input arguments, v and Exp.

2-117

2 Parameter Estimation

For more information regarding anonymous functions, see "Anonymous
Functions".

The optimization solver minimizes the residual errors. For more details on
how to write an objective/constraint function to use with the sdo.optimize
command, type help sdoExampleCostFunction at the MATLAB command
prompt.

To examine the estimation object function in more detail, type edit
sdoRCCircuit_Objective at the MATLAB command prompt.

type sdoRCCircuit_Objective

function vals = sdoRCCircuit_Objective(v,Exp)
%SDORCCIRCUIT_OBJECTIVE
%
% The sdoRCCircuit_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoRCCircuit_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoRCCircuit_cmddemo
%

% Copyright 2012 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the

2-118

Estimate Model Parameters and Initial States (Code)

% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLogging
Voltage = find(SimLog,'Voltage');

VoltageError = evalRequirement(r,Voltage.Values,Exp.OutputData(1).Values);

%%
% Return the residual errors to the optimization solver.
%
vals.F = VoltageError(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the capacitance value.

Specify the optimization options. The estimation function
sdoRCCircuit_Objective returns the error residuals between simulated and
experimental data and does not include any constraints, making this problem
ideal for the ’lsqnonlin’ solver.

opt = sdo.OptimizeOptions;

2-119

2 Parameter Estimation

opt.Method = 'lsqnonlin';

Estimate the parameters.

pOpt = sdo.optimize(estFcn,p,opt)

Optimization started 18-Jan-2014 17:15:59

Step-size First-order
Iter F-count f(x) optimality

0 3 54.999 1
1 6 21.0094 0.2124 17.3
2 9 11.5162 0.1273 5.9
3 12 9.59875 0.06504 1.93
4 15 9.32857 0.02715 0.645
5 18 9.28738 0.01003 0.143
6 21 9.28455 0.002316 0.0219

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative t
its initial value is less than the selected value of the function tolerance

pOpt =

Name: 'C1'
Value: 1.1128e-04

Minimum: 0
Maximum: Inf

Free: 1
Scale: 0.0020
Info: [1x1 struct]

1x1 param.Continuous

Compare the Measured Output and the Simulated Output

Update the experiment with the estimated capacitance value.

2-120

Estimate Model Parameters and Initial States (Code)

Exp = setEstimatedValues(Exp,pOpt);

Create a simulation scenario using the experiment and obtain the simulated
output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLogging
Voltage = find(SimLog,'Voltage');

Plot the measured and simulated data.

The simulated and measured signals match well, except for near time zero.
This mismatch is because the capacitor initial voltage defined in the model
does not match the initial voltage from the experiment.

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses After Estimation')
legend('Measured Voltage','Simulated Voltage')

Estimate the Initial State

Add the capacitor initial voltage for the C1 block to the experiment. Set its
initial guess value to 1 V.

Exp.InitialStates = sdo.getStateFromModel('sdoRCCircuit','C1');
Exp.InitialStates.Value = 1;

Recreate the estimation function to use the experiment with initial state
estimation

estFcn = @(v) sdoRCCircuit_Objective(v,Exp);

Get the initial state and capacitance value that is to be estimated from the
experiment.

2-121

2 Parameter Estimation

v = getValuesToEstimate(Exp);

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 18-Jan-2014 17:16:14

Step-size First-order
Iter F-count f(x) optimality

0 5 4.82677 1
1 10 2.19679 1.57 23.6
2 15 1.34958 0.1596 0.0883
3 20 1.34358 0.05594 0.135
4 25 1.34355 0.001457 0.00085

Local minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance.

vOpt(1,1) =

Name: 'sdoRCCircuit/C1:sdoRCCircuit.C1.vc'
Value: 2.3592

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 1

dxValue: 0
dxFree: 1

Info: [1x1 struct]

vOpt(2,1) =

Name: 'C1'
Value: 2.2663e-04

Minimum: 0
Maximum: Inf

2-122

Estimate Model Parameters and Initial States (Code)

Free: 1
Scale: 0.0020
Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiment with the estimated capacitance and capacitor initial
voltage values.

Exp = setEstimatedValues(Exp,vOpt);

Simulate the model with the estimated initial-state and parameter values and
compare the simulated output with the experiment data.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoRCCircuit','SignalLoggi
Voltage = find(SimLog,'Voltage');

plot(time,data,'ro',Voltage.Values.Time,Voltage.Values.Data,'b')
title('Simulated and Measured Responses After Initial State and Model Param
legend('Measured Voltage','Simulated Voltage')

Update the Model Parameter Values

Update the model with the estimated capacitance value. Do not update the
model capacitor initial voltage (first element of vOpt) as it is dependent on
the experiment.

sdo.setValueInModel('sdoRCCircuit',vOpt(2));

Close the model

bdclose('sdoRCCircuit')

2-123

2 Parameter Estimation

Estimate Model Parameters using Multiple Experiments
(Code)

This example shows how to estimate model parameters from multiple sets of
experimental data. You estimate the parameters of a mass-spring-damper
system.

Open the Model and Get Experimental Data

This example uses the sdoMassSpringDamper model. The model includes
two integrators to model the velocity and position of a mass in a
mass-spring-damper system.

open_system('sdoMassSpringDamper');

Load the experiment data.

load sdoMassSpringDamper_ExperimentData

The variables texp1, yexp1, texp2, and yexp2 are loaded into the workspace.
yexp1 and yexp2 describe the mass position for times texp1 and texp2
respectively.

Define the Estimation Experiments

Create a 2-element array of experiment objects to store the measured data for
the two experiments.

Create an experiment object for the first experiment.

Exp = sdo.Experiment('sdoMassSpringDamper');

Create an object to store the measured mass position output.

MeasuredPos = Simulink.SimulationData.Signal;
MeasuredPos.Values = timeseries(yexp1,texp1);
MeasuredPos.BlockPath = 'sdoMassSpringDamper/Position';
MeasuredPos.PortType = 'outport';

2-124

Estimate Model Parameters using Multiple Experiments (Code)

MeasuredPos.PortIndex = 1;
MeasuredPos.Name = 'Position';

Add the measured mass position data to the experiment as the expected
output data.

Exp.OutputData = MeasuredPos;

Create an object to specify the initial state for the Velocity block. The initial
velocity of the mass is 0 m/s.

sVel = sdo.getStateFromModel('sdoMassSpringDamper','Velocity');
sVel.Value = 0;
sVel.Free = false;

sVel.Free is set to false because the initial velocity is known and does not
need to be estimated.

Create an object to specify the initial state for the Position block. Specify a
guess for the initial mass position. Set the Free field of the initial position
object to true so that it is estimated.

sPos = sdo.getStateFromModel('sdoMassSpringDamper','Position');
sPos.Free = true;
sPos.Value = -0.1;

Add the initial states to the experiment.

Exp.InitialStates = [sVel;sPos];

Create a 2-element array of experiments. As the two experiments are
identical except for the expected output data, copy the first experiment twice.

Exp = [Exp; Exp];

Modify the expected output data of the second experiment object in Exp.

Exp(2).OutputData.Values = timeseries(yexp2,texp2);

Compare the Measured Output and the Initial Simulated Output

2-125

2 Parameter Estimation

Create a simulation scenario using the first experiment and obtain the
simulated output.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);

Search for the position signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','Signa
Position = find(SimLog,'Position');

Obtain the simulated position signal for the second experiment.

Simulator = createSimulator(Exp(2));
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','Si
Position(2) = find(SimLog,'Position');

Plot the measured and simulated data.

The model response does not match the experimental output data.

subplot(211)
plot(...

Position(1).Values.Time,Position(1).Values.Data, ...
Exp(1).OutputData.Values.Time, Exp(1).OutputData.Values.Data,'--')

title('Experiment 1: Simulated and Measured Responses Before Estimation')
ylabel('Position')
legend('Measured Position','Simulated Position','Location','SouthEast')
subplot(212)
plot(...

Position(2).Values.Time,Position(2).Values.Data, ...
Exp(2).OutputData.Values.Time, Exp(2).OutputData.Values.Data,'--')

title('Experiment 2: Simulated and Measured Responses Before Estimation')
xlabel('Time (seconds)')
ylabel('Position')
legend('Measured Position','Simulated Position','Location','SouthEast')

Specify Parameters to Estimate

2-126

Estimate Model Parameters using Multiple Experiments (Code)

Select the mass m, spring constant k, and damping coefficient b parameters
from the model. Specify that the estimated values for these parameters must
be positive.

p = sdo.getParameterFromModel('sdoMassSpringDamper', {'b', 'k', 'm'});
p(1).Minimum = 0;
p(2).Minimum = 0;
p(3).Minimum = 0;

Get the position initial state values to be estimated from the experiment.

s = getValuesToEstimate(Exp);

s contains two initial state objects, both for the Position block. Each object
corresponds to an experiment in Exp.

Group the model parameters and initial states to be estimated together.

v = [p;s]

v(1,1) =

Name: 'b'
Value: 100

Minimum: 0
Maximum: Inf

Free: 1
Scale: 128
Info: [1x1 struct]

v(2,1) =

Name: 'k'
Value: 500

Minimum: 0
Maximum: Inf

Free: 1
Scale: 512

2-127

2 Parameter Estimation

Info: [1x1 struct]

v(3,1) =

Name: 'm'
Value: 8

Minimum: 0
Maximum: Inf

Free: 1
Scale: 8
Info: [1x1 struct]

v(4,1) =

Name: 'sdoMassSpringDamper/Position'
Value: -0.1000

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250

dxValue: 0
dxFree: 1

Info: [1x1 struct]

v(5,1) =

Name: 'sdoMassSpringDamper/Position'
Value: -0.1000

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250

dxValue: 0
dxFree: 1

Info: [1x1 struct]

2-128

Estimate Model Parameters using Multiple Experiments (Code)

5x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation
output, generated using the estimated parameter values, matches the
measured data.

Use an anonymous function with one input argument that calls the
sdoMassSpringDamper_Objective function. We pass the anonymous function
to sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoMassSpringDamper_Objective(v,Exp);

The sdoMassSpringDamper_Objective function:

• Has one input argument that specifies the mass, spring constant and
damper values as well as the initial mass position.

• Has one input argument that specifies the experiment object containing
the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoMassSpringDamper_Objective function requires two inputs, but
sdo.optimize requires a function with one input argument. To work around
this, estFcn is an anonymous function with one input argument, v, but it calls
sdoMassSpringDamper_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see "Anonymous
Functions".

The sdo.optimize command minimizes the return argument of the
anonymous function estFcn, that is, the residual errors returned by
sdoMassSpringDamper_Objective. For more details on how to write an
objective/constraint function to use with the sdo.optimize command, type
help sdoExampleCostFunction at the MATLAB command prompt.

2-129

2 Parameter Estimation

To examine the estimation objective function in more detail, type edit
sdoMassSpringDamper_Objective at the MATLAB command prompt.

type sdoMassSpringDamper_Objective

function vals = sdoMassSpringDamper_Objective(v,Exp)
%SDOMASSSPRINGDAMPER_OBJECTIVE
%
% The sdoMassSpringDamper_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoMassSpringDamper_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% see also sdo.optimize, sdoExampleCostFunction
%

% Copyright 2012 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%

2-130

Estimate Model Parameters using Multiple Experiments (Code)

% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Error = [];
for ct=1:numel(Exp)

Simulator = createSimulator(Exp(ct));
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','Si
Position = find(SimLog,'Position');

PositionError = evalRequirement(r,Position.Values,Exp(ct).OutputData.Va

Error = [Error; PositionError(:)];
end

%%
% Return the residual errors to the optimization solver.
%
vals.F = Error(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the actuator parameter values
and initial state.

Specify the optimization options. The estimation function
sdoMassSpringDamper_Objective returns the error residuals between
simulated and experimental data and does not include any constraints,
making this problem ideal for the ’lsqnonlin’ solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

2-131

2 Parameter Estimation

Estimate the parameters. Notice that the initial mass position is estimated
twice, once for each experiment.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 18-Jan-2014 17:16:46

Step-size First-order
Iter F-count f(x) optimality

0 11 0.777696 1
1 22 0.00413099 3.696 0.00648
2 33 0.00118327 0.3194 0.00243
3 44 0.0011106 0.06718 5.09e-05

Local minimum found.

Optimization completed because the size of the gradient is less than
the selected value of the function tolerance.

vOpt(1,1) =

Name: 'b'
Value: 58.1959

Minimum: 0
Maximum: Inf

Free: 1
Scale: 128
Info: [1x1 struct]

vOpt(2,1) =

Name: 'k'
Value: 399.9452

Minimum: 0
Maximum: Inf

Free: 1
Scale: 512
Info: [1x1 struct]

2-132

Estimate Model Parameters using Multiple Experiments (Code)

vOpt(3,1) =

Name: 'm'
Value: 9.7225

Minimum: 0
Maximum: Inf

Free: 1
Scale: 8
Info: [1x1 struct]

vOpt(4,1) =

Name: 'sdoMassSpringDamper/Position'
Value: 0.2995

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250

dxValue: 0
dxFree: 1

Info: [1x1 struct]

vOpt(5,1) =

Name: 'sdoMassSpringDamper/Position'
Value: 0.0994

Minimum: -Inf
Maximum: Inf

Free: 1
Scale: 0.1250

dxValue: 0
dxFree: 1

Info: [1x1 struct]

5x1 param.Continuous

2-133

2 Parameter Estimation

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first experiment.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','Si
Position(1) = find(SimLog,'Position');

Obtain the simulated output for the second experiment.

Simulator = createSimulator(Exp(2));
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoMassSpringDamper','Si
Position(2) = find(SimLog,'Position');

Plot the measured and simulated data.

The model response using the estimated parameter values nicely matches
the output data for the experiments.

subplot(211)
plot(...

Position(1).Values.Time,Position(1).Values.Data, ...
Exp(1).OutputData.Values.Time, Exp(1).OutputData.Values.Data,'--')

title('Experiment 1: Simulated and Measured Responses After Estimation')
ylabel('Position')
legend('Measured Position','Simulated Position','Location','NorthEast')
subplot(212)
plot(...

Position(2).Values.Time,Position(2).Values.Data, ...
Exp(2).OutputData.Values.Time, Exp(2).OutputData.Values.Data,'--')

title('Experiment 2: Simulated and Measured Responses After Estimation')
xlabel('Time (seconds)')
ylabel('Voltage')

2-134

Estimate Model Parameters using Multiple Experiments (Code)

legend('Measured Position','Simulated Position','Location','SouthEast')

Update the Model Parameter Values

Update the model m, k, and b parameter values. Do not update the model
initial position value as this is dependent on the experiment.

sdo.setValueInModel('sdoMassSpringDamper',vOpt(1:3));

Close the model

bdclose('sdoMassSpringDamper')

2-135

2 Parameter Estimation

Estimate Model Parameters Per Experiment (Code)
This example shows how to use multiple experiments to estimate a mix of
model parameter values; some that are estimated using all the experiments
and others that are estimated using individual experiments. The example
also shows how to configure the model with experiment dependent parameter
values.

You estimate the parameters of a rechargeable battery based on data collected
in experiments that discharge and charge the battery.

Open the Model and Get Experimental Data

This example estimates parameters of a simple, rechargeable battery model,
sdoBattery. The model input is the battery current and the model output,
the battery terminal voltage, is computed from the battery state-of-charge.

open_system('sdoBattery');

The model is based on the equation

Where:

• is the battery terminal voltage in Volts.

• is the battery constant voltage in Volts.

• is the battery polarization resistance in Ohms.

• is the maximum battery capacity in Ampere-Hour.

• is the battery charge state, with 1 being fully charged and 0 zero
charge.The battery state-of-charge is computed from the integral of the
battery current with a +ve current indicating discharge and a -ve current
indicating charging. The battery initial state-of-charge is specified by
in Ampere-Hour.

2-136

Estimate Model Parameters Per Experiment (Code)

• is the voltage drop when charging, expressed as a fraction of the battery
constant voltage. When the battery is discharging this value is zero.

V, K, Qmax, Q0, and Loss are variables defined in the model workspace.

Load the experiment data. A 1.2V (6500mAh) battery was subjected to a
discharge experiment and a charging experiment.

load sdoBattery_ExperimentData

The variables Charge_Data and DCharge_Data are loaded into the workspace.
The first column of Charge_Data contains time data. The second and third
columns of Charge_Data describe the current and voltage during a battery
charging experiment. DCharge_Data is similarly structured and contains data
for a battery discharging experiment.

Plot the Experiment Data

subplot(221),
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,2))
title('Experiment: Discharge')
xlabel('Time (hours)')
ylabel('Current (A)')
subplot(223)
plot(DCharge_Data(:,1)/3600,DCharge_Data(:,3))
xlabel('Time (hours)')
ylabel('Voltage (V)')
subplot(222),
plot(Charge_Data(:,1)/3600,Charge_Data(:,2))
title('Experiment: Charge')
xlabel('Time (hours)')
ylabel('Current (A)')
subplot(224)
plot(Charge_Data(:,1)/3600,Charge_Data(:,3))
xlabel('Time (hours)')
ylabel('Voltage (V)')

Define the Estimation Experiments

2-137

2 Parameter Estimation

Create a 2-element array of experiment objects to specify the measured data
for the two experiments.

Create an experiment object for the battery discharge experiment. The
measured current data is specified as a timeseries in the experiment object.

DCharge_Exp = sdo.Experiment('sdoBattery');

Specify the input data (current) as a timeseries object.

DCharge_Exp.InputData = timeseries(DCharge_Data(:,2),DCharge_Data(:,1));

Create an object to specify the measured voltage output data.

VoltageSig = Simulink.SimulationData.Signal;
VoltageSig.Name = 'Voltage';
VoltageSig.BlockPath = 'sdoBattery/SOC -> Voltage';
VoltageSig.PortType = 'outport';
VoltageSig.PortIndex = 1;
VoltageSig.Values = timeseries(DCharge_Data(:,3),DCharge_Data(:,1));

Add the voltage signal to the discharge experiment as the expected output
data.

DCharge_Exp.OutputData = VoltageSig;

Specify the battery initial charge state for the experiment. The battery charge
state is modeled by the Q (Ah) block and it’s initial value is specified by the
variable Q0. Create a parameter for the Q0 variable and add the parameter to
the experiment. Q0 is experiment dependent and assumes different values in
the discharging and charging experiments.

Q0 = sdo.getParameterFromModel('sdoBattery','Q0');
Q0.Value = 6.5;
Q0.Free = false;

Q0.Free is set to false because the initial battery charge is known and does
not need to be estimated.

Add the Q0 parameter to the experiment.

2-138

Estimate Model Parameters Per Experiment (Code)

DCharge_Exp.Parameters = Q0;

Create an experiment object to store the charging experiment data. Add the
measured current input and measured voltage output data to the object.

Charge_Exp = sdo.Experiment('sdoBattery');
Charge_Exp.InputData = timeseries(Charge_Data(:,2),Charge_Data(:,1));
VoltageSig.Values = timeseries(Charge_Data(:,3),Charge_Data(:,1));
Charge_Exp.OutputData = VoltageSig;

Add the battery initial charge and charging loss fraction parameters to the
experiment. For this experiment, the initial charge (Q0) is known (0 Ah), but
the value of the charging loss fraction (Loss) is not known.

Q0.Value = 0;

Loss = sdo.getParameterFromModel('sdoBattery','Loss');
Loss.Free = true;
Loss.Minimum = 0;
Loss.Maximum = 0.5;

Charge_Exp.Parameters = [Q0;Loss];

Loss.Free is set to true so that the value of Loss is estimated.

Collect both experiments into one vector.

Exp = [DCharge_Exp; Charge_Exp];

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the first (discharging) experiment and
obtain the simulated output.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);

Search for the voltage signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggin
Voltage(1) = find(SimLog,'Voltage');

2-139

2 Parameter Estimation

Obtain the simulated voltage signal for the second (charging) experiment.

Simulator = createSimulator(Exp(2));
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggin
Voltage(2) = find(SimLog,'Voltage');

Plot the measured and simulated data.

The model response does not match the experimental output data.

subplot(211)
plot(...

Voltage(1).Values.Time/3600,Voltage(1).Values.Data, ...
Exp(1).OutputData.Values.Time/3600, Exp(1).OutputData.Values.Data,'-.')

title('Discharging Experiment: Simulated and Measured Responses Before Esti
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthWest')
subplot(212)
plot(...

Voltage(2).Values.Time/3600,Voltage(2).Values.Data, ...
Exp(2).OutputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.')

title('Charging Experiment: Simulated and Measured Responses Before Estimat
xlabel('Time (hours)')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthEast')

Specify Parameters to Estimate

Estimate the values of the battery voltage V, the battery polarization
resistance K, and the charging loss fraction Loss. The V and K parameters
are estimated using all the experiment data while the Loss parameter is
estimated using only the charging data.

Select the battery voltage V and the battery polarization resistance K
parameters from the model. Specify minimum and maximum bounds for
these parameters.

2-140

Estimate Model Parameters Per Experiment (Code)

p = sdo.getParameterFromModel('sdoBattery',{'V','K'});

p(1).Minimum = 0;
p(1).Maximum = 2;

p(2).Minimum = 1e-6;
p(2).Maximum = 1e-1;

Get the experiment-specific Loss parameter from the experiment.

s = getValuesToEstimate(Exp);

Group all the parameters to be estimated.

v = [p;s]

v(1,1) =

Name: 'V'
Value: 1.2000

Minimum: 0
Maximum: 2

Free: 1
Scale: 2
Info: [1x1 struct]

v(2,1) =

Name: 'K'
Value: 1.0000e-03

Minimum: 1.0000e-06
Maximum: 0.1000

Free: 1
Scale: 0.0020
Info: [1x1 struct]

v(3,1) =

2-141

2 Parameter Estimation

Name: 'Loss'
Value: 0.0100

Minimum: 0
Maximum: 0.5000

Free: 1
Scale: 0.0156
Info: [1x1 struct]

3x1 param.Continuous

Define the Estimation Objective

Create an estimation objective function to evaluate how closely the simulation
output, generated using the estimated parameter values, matches the
measured data.

Use an anonymous function with one input argument that calls the
sdoBattery_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoBattery_Objective(v,Exp);

The sdoBattery_Objective function:

• Has one input argument that specifies the estimated battery parameter
values.

• Has one input argument that specifies the experiment object containing
the measured data.

• Returns a vector of errors between simulated and experimental outputs.

The sdoBattery_Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this,
estFcn is an anonymous function with one input argument, v, but it calls
sdoBattery_Objective using two input arguments, v and Exp.

2-142

Estimate Model Parameters Per Experiment (Code)

For more information regarding anonymous functions, see "Anonymous
Functions".

The sdo.optimize command minimizes the return argument of the
anonymous function estFcn, that is, the residual errors returned
by sdoBattery_Objective. For more details on how to write an
objective/constraint function to use with the sdo.optimize command, type
help sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoBattery_Objective at the MATLAB command prompt.

type sdoBattery_Objective

function vals = sdoBattery_Objective(v,Exp)
%SDOBATTERY_OBJECTIVE
%
% The sdoBattery_Objective function is used to compare model
% outputs against experimental data.
%
% vals = sdoBattery_Objective(v,Exp)
%
% The |v| input argument is a vector of estimated model parameter values
% and initial states.
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and is used by
% the |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoBattery_cmddemo
%

% Copyright 2012 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that

2-143

2 Parameter Estimation

% it returns the tracking error residuals (rather than the
% sum-squared-error) and does not normalize the errors.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'Residuals';
r.Normalize = 'off';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,v);

%%
% Simulate the model and compare model outputs with measured experiment
% data.
%
Error = [];
for ct=1:numel(Exp)

Simulator = createSimulator(Exp(ct));
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggi
Voltage = find(SimLog,'Voltage');

VoltageError = evalRequirement(r,Voltage.Values,Exp(ct).OutputData(1).V

Error = [Error; VoltageError(:)];
end

%%
% Return the residual errors to the optimization solver.
%
vals.F = Error(:);
end

Estimate the Parameters

Use the sdo.optimize function to estimate the battery parameter values.

2-144

Estimate Model Parameters Per Experiment (Code)

Specify the optimization options. The estimation function
sdoBattery_Objective returns the error residuals between simulated and
experimental data and does not include any constraints, making this problem
ideal for the ’lsqnonlin’ solver.

opt = sdo.OptimizeOptions;
opt.Method = 'lsqnonlin';

Estimate the parameters.

vOpt = sdo.optimize(estFcn,v,opt)

Optimization started 18-Jan-2014 17:17:40

Step-size First-order
Iter F-count f(x) optimality

0 7 3272.22 1
1 14 619.356 0.1634 3.15e+05
2 21 411.131 0.2175 28.7
3 28 405.529 0.3838 2.16e+03
4 35 403.727 0.2767 15.2
5 42 403.379 0.1645 1.14e+03

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative t
its initial value is less than the selected value of the function tolerance

vOpt(1,1) =

Name: 'V'
Value: 1.3083

Minimum: 0
Maximum: 2

Free: 1
Scale: 2
Info: [1x1 struct]

vOpt(2,1) =

2-145

2 Parameter Estimation

Name: 'K'
Value: 0.0010

Minimum: 1.0000e-06
Maximum: 0.1000

Free: 1
Scale: 0.0020
Info: [1x1 struct]

vOpt(3,1) =

Name: 'Loss'
Value: 5.1801e-05

Minimum: 0
Maximum: 0.5000

Free: 1
Scale: 0.0156
Info: [1x1 struct]

3x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,vOpt);

Obtain the simulated output for the first (discharging) experiment.

Simulator = createSimulator(Exp(1));
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggin
Voltage(1) = find(SimLog,'Voltage');

Obtain the simulated output for the second (charging) experiment.

Simulator = createSimulator(Exp(2));

2-146

Estimate Model Parameters Per Experiment (Code)

Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoBattery','SignalLoggin
Voltage(2) = find(SimLog,'Voltage');

Plot the measured and simulated data.

The simulation results match the experimental data well except in the
regions when the battery is fully charged. This is not unexpected as the
simple battery model does not model the exponential voltage drop when the
battery is fully charged.

subplot(211)
plot(...

Voltage(1).Values.Time/3600,Voltage(1).Values.Data, ...
Exp(1).OutputData.Values.Time/3600, Exp(1).OutputData.Values.Data,'-.')

title('Discharging Experiment: Simulated and Measured Responses After Estim
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthWest')
subplot(212)
plot(...

Voltage(2).Values.Time/3600,Voltage(2).Values.Data, ...
Exp(2).OutputData.Values.Time/3600, Exp(2).OutputData.Values.Data,'-.')

title('Charging Experiment: Simulated and Measured Responses After Estimati
xlabel('Time (hours)')
ylabel('Voltage (V)')
legend('Simulated Voltage','Measured Voltage','Location','SouthEast')

Update the Model Parameter Values

Update the model V, K, and Loss parameter values.

sdo.setValueInModel('sdoBattery',vOpt);

Close the model

bdclose('sdoBattery')

2-147

2 Parameter Estimation

Estimate Model Parameters with Parameter Constraints
(Code)

This example shows how to estimate model parameters while imposing
constraints on the parameter values.

You estimate dynamic and static friction coefficients of a simple friction
system.

Open the Model and Get Experimental Data

This example estimates parameters for a simple friction system, sdoFriction.
The model input is the force applied to a mass and the model outputs are the
mass position and velocity.

open_system('sdoFriction');

The model is based on a mass sliding on a surface. The mass is subject to a
static friction that must be overcome before the mass moves and a dynamic
friction once the mass moves. The static friction, u_static, is a fraction of the
mass normal force; similarly the dynamic friction, u_dynamic, is a fraction of
the mass normal force.

Load the experiment data. The mass was subjected to an applied force and
its position recorded.

load sdoFriction_ExperimentData

The variables AppliedForce, Position, and Velocity are loaded into the
workspace. The first column of each of these variables represents time and
the second column represents the measured data. Because velocity is the first
derivative of position, we only use the position measurements for this example.

Plot the Experiment Data

subplot(211),
plot(AppliedForce(:,1),AppliedForce(:,2))
title('Measured Applied Force Input for Simple Friction System');

2-148

Estimate Model Parameters with Parameter Constraints (Code)

ylabel('Applied Force (N)')
subplot(212)
plot(Position(:,1),Position(:,2))
title('Measured Mass Position for Simple Friction System');
xlabel('Time (seconds)')
ylabel('Position (m)')

Define the Estimation Experiment

Create an experiment object to specify the experiment data.

Exp = sdo.Experiment('sdoFriction');

Specify the input data (applied force) as a timeseries object.

Exp.InputData = timeseries(AppliedForce(:,2),AppliedForce(:,1));

Create an object to specify the measured mass position output.

PositionSig = Simulink.SimulationData.Signal;
PositionSig.Name = 'Position';
PositionSig.BlockPath = 'sdoFriction/x';
PositionSig.PortType = 'outport';
PositionSig.PortIndex = 1;
PositionSig.Values = timeseries(Position(:,2),Position(:,1));

Add the measured mass position data to the experiment as the expected
output data.

Exp.OutputData = PositionSig;

Compare the Measured Output and the Initial Simulated Output

Create a simulation scenario using the experiment and obtain the simulated
output.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

2-149

2 Parameter Estimation

Search for the position signal in the logged simulation data.

SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggi
Position = find(SimLog,'Position');

Plot the measured and simulated data.

As expected, the model response does not match the experimental output data.

figure
plot(...

Position.Values.Time,Position.Values.Data, ...
Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.')

title('Simulated and Measured Responses Before Estimation')
ylabel('Position (m)')
xlabel('Time (seconds)')
legend('Simulated Position','Measured Position','Location','NorthWest')

Specify Parameters to Estimate

Estimate the u_static and u_dynamic friction coefficients using the
experiment data. These coefficients are used as gains in the Static
Friction and Dynamic Friction blocks, respectively. Physics indicates that
friction coefficients should be constrained so that u_static u_dynamic; this
parameter constraint is implemented in the estimation objective function.

Select the u_static and u_dynamic model parameters. Specify bounds for the
estimated parameter values. Both coefficients are limited to the range [0 1].

p = sdo.getParameterFromModel('sdoFriction',{'u_static','u_dynamic'});

p(1).Minimum = 0;
p(1).Maximum = 1;

p(2).Minimum = 0;
p(2).Maximum = 1;

Define the Estimation Objective

2-150

Estimate Model Parameters with Parameter Constraints (Code)

Create an estimation objective function to evaluate how closely the simulation
output, generated using the estimated parameter values, matches the
measured data.

Use an anonymous function with one input argument that calls the
sdoFriction_Objective function. We pass the anonymous function to
sdo.optimize, which evaluates the function at each optimization iteration.

estFcn = @(v) sdoFriction_Objective(v,Exp);

The sdoFriction_Objective function:

• Has one input argument that specifies the estimated friction coefficients.

• Has one input argument that specifies the experiment object containing
the measured data.

• Returns the sum-squared-error errors between simulated and experimental
outputs, and returns the parameter constraint.

The sdoFriction_Objective function requires two inputs, but sdo.optimize
requires a function with one input argument. To work around this,
estFcn is an anonymous function with one input argument, v, but it calls
sdoFriction_Objective using two input arguments, v and Exp.

For more information regarding anonymous functions, see "Anonymous
Functions".

The sdo.optimize command minimizes the return argument of the
anonymous function estFcn, that is, the residual errors returned
by sdoFriction_Objective. For more details on how to write an
objective/constraint function to use with the sdo.optimize command, type
help sdoExampleCostFunction at the MATLAB command prompt.

To examine the estimation objective function in more detail, type edit
sdoFriction_Objective at the MATLAB command prompt.

type sdoFriction_Objective

2-151

2 Parameter Estimation

function vals = sdoFriction_Objective(p,Exp)
%SDOFRICTION_OBJECTIVE
%
% The sdoFriction_Objective function is used to compare model
% outputs against experimental data and measure how well constraints are
% satisfied.
%
% vals = sdoFriction_Objective(p,Exp)
%
% The |p| input argument is a vector of estimated model parameter values
%
% The |Exp| input argument contains the estimation experiment data.
%
% The |vals| return argument contains information about how well the
% model simulation results match the experimental data and how well
% constraints are satisfied. The |vals| argument is used by the
% |sdo.optimize| function to estimate the model parameters.
%
% See also sdo.optimize, sdoExampleCostFunction, sdoFriction_cmddemo
%

% Copyright 2012 The MathWorks, Inc.

%%
% Define a signal tracking requirement to compute how well the model output
% matches the experiment data. Configure the tracking requirement so that
% it returns the sum-squared-error.
%
r = sdo.requirements.SignalTracking;
r.Type = '==';
r.Method = 'SSE';

%%
% Update the experiments with the estimated parameter values.
%
Exp = setEstimatedValues(Exp,p);

%%
% Simulate the model and compare model outputs with measured experiment
% data.

2-152

Estimate Model Parameters with Parameter Constraints (Code)

%
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggingN
Position = find(SimLog,'Position');

PositionError = evalRequirement(r,Position.Values,Exp.OutputData(1).Values)

%%
% Measure how well the parameters satisfy the friction coefficient constrai
% |u_static| >= |u_dynamic|. Note that constraints are returned to the
% optimizer in a c <=0 format. The friction coefficient constraint is
% rewritten accordingly.
PConstr = p(2).Value - p(1).Value; % u_dynamic - u_static <= 0

%%
% Return the sum-squared-error and constraint violation to the optimization
% solver.
%
vals.F = PositionError(:);
vals.Cleq = PConstr;
end

The friction coefficient constraint, u_static u_dynamic, is implemented
in the sdoFriction_Objective function as u_dynamic - u_static 0. This
is because the optimizer requires constraint values in a format. For more
information, type help sdo.optimize at the MATLAB command prompt.

Estimate the Parameters

Use the sdo.optimize function to estimate the friction model parameter
values.

Specify the optimization options. The estimation function
sdoFriction_Objective returns the sum-squared-error between simulated
and experimental data and includes a parameter constraint. The default
’fmincon’ solver is ideal for this type of problem.

Estimate the parameters.

2-153

2 Parameter Estimation

pOpt = sdo.optimize(estFcn,p)

Optimization started 18-Jan-2014 17:19:28

max Step-size First-order
Iter F-count f(x) constraint optimality

0 5 27.7267 0
1 11 22.5643 0 2.21 72.9
2 15 17.4771 0 0.51 16
3 22 0.762174 0 1.33 10.7
4 29 0.40765 0 0.263 3.15
5 34 0.0254254 0 0.0897 1.22
6 39 0.00522001 0 0.0296 0.276
7 44 0.00398126 0 0.0209 0.185
8 49 0.00120167 0 0.111 0.17
9 60 0.00118106 0 0.0212 0.173

10 72 0.00110164 0 0.0262 0.165
11 91 0.00110097 0 0.0031 0.174
12 108 0.00110097 0 0.00165 0.174

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

pOpt(1,1) =

Name: 'u_static'
Value: 0.7973

Minimum: 0
Maximum: 1

Free: 1
Scale: 0.5000
Info: [1x1 struct]

pOpt(2,1) =

Name: 'u_dynamic'

2-154

Estimate Model Parameters with Parameter Constraints (Code)

Value: 0.4021
Minimum: 0
Maximum: 1

Free: 1
Scale: 0.2500
Info: [1x1 struct]

2x1 param.Continuous

Compare the Measured Output and the Final Simulated Output

Update the experiments with the estimated parameter values.

Exp = setEstimatedValues(Exp,pOpt);

Obtain the simulated output for the experiment.

Simulator = createSimulator(Exp);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData,get_param('sdoFriction','SignalLoggin
Position = find(SimLog,'Position');

Plot the measured and simulated data.

It can be seen that the model response using the estimated parameter values
nicely matches the experiment output data.

plot(...
Position.Values.Time,Position.Values.Data, ...
Exp.OutputData.Values.Time, Exp.OutputData.Values.Data,'-.')

title('Simulated and Measured Responses After Model Parameter Estimation')
ylabel('Position (m)')
xlabel('Time (seconds)')
legend('Simulated Position','Measured Position','Location','NorthWest')

Update the Model Parameter Values

2-155

2 Parameter Estimation

Update the model u_static and u_dynamic parameter values.

sdo.setValueInModel('sdoFriction',pOpt);

Close the model

bdclose('sdoFriction')

2-156

Estimate Model Parameter Values (GUI)

Estimate Model Parameter Values (GUI)
This example shows how to estimate the parameters of an engine throttle.

Simulink® Model of the Engine Throttle System

The Simulink® model for the system is shown below.

Throttle Model Description

The throttle controls the air mass flow into the intake manifold of an engine.
The throttle body contains a butterfly valve that opens when the driver
presses down on the accelerator pedal. This lets more air enter the cylinders
and causes the engine to produce more torque.

A DC motor controls the opening angle of the butterfly valve. There is also
a spring attached to the valve to return it to its closed position when the
DC motor is de-energized. The amount of rotation of the valve is limited to
approximately 90 degrees. Therefore, if a large command input is applied to
the motor, the valve hits the hard stops preventing it from rotating further.

The motor is modeled as a torque gain and a time-delay input with parameters
Kt and input_delay. The butterfly valve is modeled as a mass-spring-damper
system with parameters J, c and k. This system is augmented with hard stops
to limit the valve opening to 90 degrees. We know the model components,
however, the parameter values of the system are not known accurately. A look
at the response of this system (shown below) shows that it does not match the
experimental data; hence the parameters need to be estimated for a better fit.

Estimation Data

Double-click the Parameter Estimation GUI with preloaded data block in
the model to open a pre-configured estimation GUI session.

2-157

2 Parameter Estimation

A new data set can be created by clicking on the "Transient Data" node and
pressing the "New" button in the right-hand-side panel. These data sets can
then be used for estimation and/or validation.

We have already defined three data sets. The first one will be used for
parameter estimation and the remaining two for validating the response of
the Simulink model with the estimated parameters.

These data sets can be imported from various sources including MATLAB®
variables, MAT files, Excel® files, or comma-separated-value files. Once we
import the data, we can plot them to confirm that we have the right data
sets in our estimation project.

Define Variables

The next step is to define the variables for the estimation. This establishes
which parameters of the simulation can be adjusted, and any rules governing
their values.

The Estimation variables are selected by clicking on the "Variables" node and
pressing the "Add" button. This opens a "Parameter Selection Dialog" from
which we can select the model parameters that we desire to estimate.

We have already added the four unknown parameters in our model using
the selection dialog. These parameters are the butterfly valve inertia, J; the
damping coefficient, c; the return spring constant, k; and the time lag in
motor response, input_delay.

On the panel to the right of the list of parameters, you can set the initial
guesses for the parameter values, and the minimum and maximum bounds
on these values.

Since we know from our physical insight that all of these parameters have
positive values, we set their lower limits to zero. We also put an upper bound

2-158

Estimate Model Parameter Values (GUI)

of 0.1 sec on the time delay parameter. We can also select an initial value
for the parameters. These may come from some quick calculations of some
formulas that determine the parameters.

The Estimation Task

In order to run an estimation, we first need to create an "Estimation" node.
This is done by clicking on the "Estimation" node and pressing the "New"
button in the right-hand-side panel.

In our project, we have already created an estimation node called "New
Estimation". We can click on this node to set up its various options.

The first panel is where we select the data sets to be used in this estimation.
It is possible to use one or more data sets at once in a given estimation. For
this model, we will use the data set called "Estimation Data".

The next panel called "Parameters" is where we select which parameters
to adjust in this estimation. Even though we selected four parameters, in
general, it is not necessary to estimate all of them at once. However, since our
model is simple enough we will estimate all four parameters.

Now we are almost ready to start our estimation. However, in order to
monitor the progress of the estimation process, we would like to create a
number of dynamics plots, called "Views".

Viewing the Results

Two plot types are created to view the estimation results. The plot below
shows the experimental data overlaid with the simulated data. The simulated
data come from the model with the estimated parameters. The results of the
estimation appear satisfactory as the estimated (blue) curve closely matches
the measured results.

2-159

2 Parameter Estimation

We can also view how the parameters changed in the model. The plot below
shows the trajectory of the parameters at each iteration of the estimation
process. It is shown that the parameters settle to their final values as the
estimation process converges to a solution.

Validation

It is important to validate the results against other data sets. A successful
estimation will not only match the experimental data that was used for
estimation, but also the other data sets that were collected in experiments.
A validation was already created for this project. Clicking on this validation
node will create a measured vs. simulation plot that can be used to compare
the simulation response against experimental data.

Using the other two data sets for the validation, we can confirm that our
estimation was successful. This shows that the estimation process is robust
enough to handle a variety of inputs.

It is therefore shown that the parameters in the model were estimated well to
match the experimental data and the estimation was robust enough to be able
to validate the model with additional experimental data.

Conclusion

We conclude the validation of the estimated model is an important step in
determining how robust the estimation was. We could ask why validate when
the estimation data set returned very good results. Without validation of our
model, there is no way of telling if the parameters estimated were over fitted

2-160

Estimate Model Parameter Values (GUI)

for a particular data set. Using additional data sets for validation shows
how the model responds to a variety of different inputs and if our original
estimation was appropriate.

2-161

2 Parameter Estimation

2-162

3

Response Optimization

• “How the Optimization Algorithm Formulates Minimization Problems”
on page 3-3

• “Specify Signals to Log” on page 3-13

• “Specifying Step Response Characteristics” on page 3-14

• “Specifying Custom Requirements” on page 3-18

• “Move Constraints” on page 3-22

• “Specify Time-Domain Design Requirements” on page 3-25

• “Edit Design Requirements” on page 3-41

• “Specify Frequency-Domain Design Requirements” on page 3-43

• “Specify Design Variables” on page 3-65

• “Specify Independent Parameters to Optimize” on page 3-67

• “Update Model with Design Variables Set” on page 3-71

• “General Options” on page 3-73

• “Optimization Options” on page 3-77

• “Create Linearization I/O Sets” on page 3-82

• “Linearization Options” on page 3-84

• “Plots in the Design Optimization Tool” on page 3-87

• “Compare Requirements and Design Variables Using Spider Plot” on page
3-94

• “Export Design Variable Values for Specific Iteration” on page 3-98

• “Design Optimization to Meet Time- and Frequency-Domain Requirements
(GUI)” on page 3-100

3 Response Optimization

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105

• “Design Optimization to Meet a Custom Objective (Code)” on page 3-112

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122

• “Design Optimization to Meet Frequency-Domain Requirements (GUI)” on
page 3-127

• “Specify Custom Signal Objective with Uncertain Variable (GUI)” on page
3-136

• “Design Optimization with Uncertain Variables (Code)” on page 3-141

• “Generate MATLAB Code for Design Optimization Problems (GUI)” on
page 3-149

• “Skip Model Simulation Based on Parameter Constraint Violation (GUI)”
on page 3-152

• “Optimizing Parameters for Robustness” on page 3-157

• “Accelerating Model Simulations During Optimization” on page 3-170

• “Speedup Using Parallel Computing” on page 3-172

• “How to Use Parallel Computing” on page 3-177

• “Optimization Does Not Make Progress” on page 3-186

• “Optimization Convergence” on page 3-188

• “Optimization Speed and Parallel Computing” on page 3-191

• “Undesirable Parameter Values” on page 3-194

• “Reverting to Initial Parameter Values” on page 3-196

• “Manage Design Optimization Tool Session” on page 3-197

• “Optimizing Time-Domain Response of Simulink® Models Using Parallel
Computing” on page 3-199

3-2

How the Optimization Algorithm Formulates Minimization Problems

How the Optimization Algorithm Formulates Minimization
Problems

When you optimize parameters of a Simulink model to meet design
requirements, Simulink Design Optimization software automatically converts
the requirements into a constrained optimization problem and then solves
the problem using optimization techniques. The constrained optimization
problem iteratively simulates the Simulink model, compares the results of the
simulations with the constraint objectives, and uses optimization methods to
adjust tuned parameters to better meet the objectives.

This topic describes how the software formulates the constrained optimization
problem used by the optimization algorithms. For each optimization
algorithm, the software formulates one of the following types of minimization
problems:

• Feasibility

• Tracking

• Mixed feasibility and tracking

For more information on how each optimization algorithm formulates these
problems, see:

• “Gradient Descent Method Problem Formulations” on page 3-7

• “Simplex Search Method Problem Formulations” on page 3-9

• “Pattern Search Method Problem Formulations” on page 3-10

• “Gradient Computations” on page 3-11

Feasibility Problem and Constraint Formulation
Feasibilitymeans that the optimization algorithm finds parameter values that
satisfy all constraints to within specified tolerances but does not minimize
any objective or cost function in doing so.

In the following figure, x1, x3, and xn represent a combination of parameter
values P1 and P2 and are feasible solutions because they do not violate the
lower bound constraint.

3-3

3 Response Optimization

��
��
���
�

����	���

 !
 "

 #

$!

$"

In a Simulink model, you constrain a signal by specifying lower and upper
bounds in a Check block (Check Step Response Characteristics, ...) or a
requirement object (sdo.requirements.StepResponseEnvelope, ...), as
shown in the following figure.

%��������
��

��
������
��

These constraints are piecewise linear bounds. A piecewise linear bound ybnd
with n edges can be represented as:

y t

y t t t t
y t t t t

y t t t t

bnd

n n n

()

()
()

()

,=

≤ ≤
≤ ≤

≤ ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪ +

1 1 2

2 2 3

1

 

The software computes the signed distance between the simulated response
and the edge. The signed distance for lower bounds is:

3-4

How the Optimization Algorithm Formulates Minimization Problems

c

y y

y y

y

t t t
bnd sim

t t t
bnd sim

t t t
bnd

n n

=

−

−

−

≤ ≤

≤ ≤

≤ ≤ +

max

max

max

1 2

2 3

1

yysim

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

where ysim is the simulated response and is a function of the parameters
being optimized.

The signed distance for upper bounds is:

c

y y

y y

y y

t t t
sim bnd

t t t
sim bnd

t t t
sim

n n

=

−

−

−

≤ ≤

≤ ≤

≤ ≤ +

max

max

max

1 2

2 3

1

bbnd

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

At the command line, opt_fcn supplies c directly from the Cleq field of vals.

If all the constraints are met (c ≤ 0) for some combination of parameter values,
then that solution is said to be feasible. In the following figure, x1 and x3
are feasible solutions.

����	���

 !

 "

 #

$!

$"

When your model has multiple requirements or vector signals feeding a
requirement, the constraint vector is extended with the constraint violations
for each signal and bound:

C c c cn= []1 2; ; ; .

3-5

3 Response Optimization

Tracking Problem
In addition to lower and upper bounds, you can specify a reference signal in
a Check Against Reference block or sdo.requirements.SignalTracking
object, which the Simulink model output can track. The tracking objective is a
sum-squared-error tracking objective.

You specify the reference signal as a sequence of time-amplitude pairs:

y t t T T Tref ref ref ref ref refN(), { , , , }.∈ 0 1 

The software computes the simulated response as a sequence of
time-amplitude pairs:

y t t T T Tsim sim sim sim sim simN(), { , , , },∈ 0 1 

where some values of tsim may match the values of tref.

A new time base, tnew, is formed from the union of the elements of tref and
tsim. Elements that are not within the minimum-maximum range of both tref
and tsim are omitted:

t t t tnew sim ref { : }

Using linear interpolation, the software computes the values of yref and ysim at
the time points in tnew and then computes the scaled error:

e t
y t y t

y
new

sim new ref new

t
ref

new

()
() ()

max
.=

−()

Finally, the software computes the weighted, integral square error:

f w t e t dt= ()∫ () .2

3-6

How the Optimization Algorithm Formulates Minimization Problems

Note The weight w(t) is 1 by default. You can specify a different value of
weight only at the command line.

When your model has requirements or vector signals feeding a requirement,
the tracking objective equals the sum of the individual tracking integral
errors for each signal:

F fi= ∑ .

Gradient Descent Method Problem Formulations
The Gradient Descent method uses the Optimization Toolbox function
fmincon to optimize model parameters to meet design requirements.

Problem Type Problem Formulation

Feasibility Problem The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3.

• If you select the maximally feasible solution option (i.e., the
optimization continues after an initial feasible solution is found),
the software uses the following problem formulation:

min

. . ()

,x

s t C x
x x x








 


 


 0

γ is a slack variable that permits a feasible solution with C(x) ≤
γ rather than C(x) ≤ 0.

• If you do not select the maximally feasible solution option (i.e.,
the optimization terminates as soon as a feasible solution is
found), the software uses the following problem formulation:

3-7

3 Response Optimization

Problem Type Problem Formulation

min

. . ()
x

s t C x
x x x

 0


 

0

Tracking Problem The software formulates the tracking objective F(x) as described
in “Tracking Problem” on page 3-6 and minimizes the tracking
objective:

min ()

. .
x

F x

s t x x x

 ≤ ≤

3-8

How the Optimization Algorithm Formulates Minimization Problems

Problem Type Problem Formulation

Mixed Feasibility and
Tracking Problem

The software minimizes following problem formulation:

min ()

. . ()
x

F x

s t C x
x x x

≤
≤ ≤

0

Note When tracking a reference signal, the software ignores the
maximally feasible solution option.

Simplex Search Method Problem Formulations
The Simplex Search method uses the Optimization Toolbox function
fminsearch and fminbnd to optimize model parameters to meet design
requirements. fminbnd is used if one scalar parameter is being optimized,

otherwise fminsearch is used. You cannot use parameter bounds x x x≤ ≤
with fminsearch.

Problem Type Problem Formulation

Feasibility Problem The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3 and
then minimizes the maximum constraint violation:

min
x

C x max ()()

Tracking Problem The software formulates the tracking objective F(x) as described in
“Tracking Problem” on page 3-6 and then minimizes the tracking
objective:

3-9

3 Response Optimization

Problem Type Problem Formulation

min ()
x

F x

Mixed Feasibility and
Tracking Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min
x

C x max ()()

2 Minimizes the tracking objective. The software uses the results
from step 1 as initial guesses and maintains feasibility by
introducing a discontinuous barrier in the optimization objective.

min

()
inf max ()
()

x
x

where

x
if C x

F x otherwise

 Γ

Γ

()

= () >⎧
⎨
⎩

0

Pattern Search Method Problem Formulations
The Pattern Search method uses the Global Optimization Toolbox function
patternsearch to optimize model parameters to meet design requirements.

Problem Type Problem Formulation

Feasibility Problem The software formulates the constraint C(x) as described in
“Feasibility Problem and Constraint Formulation” on page 3-3 and
then minimizes the maximum constraint violation:

min

. .
x

C x

s t x x x

 max

()()

≤ ≤

Tracking Problem The software formulates the tracking objective F(x) as described in
“Tracking Problem” on page 3-6 and then minimizes the tracking
objective:

3-10

How the Optimization Algorithm Formulates Minimization Problems

Problem Type Problem Formulation

min ()

. .
x

F x

s t x x x

 ≤ ≤

Mixed Feasibility and
Tracking Problem

The software formulates the problem in two steps:

1 Finds a feasible solution.

min

. .
x

C x

s t x x x

 max

()()

≤ ≤

2 Minimizes the tracking objective. The software uses the results
from step 1 as initial guesses and maintains feasibility by
introducing a discontinuous barrier in the optimization objective.

min ()

. .

()
inf max ()
()

x
x

s t x x x
where

x
if C x

F x other

Γ

Γ

≤ ≤

= () > 0
wwise

⎧
⎨
⎩

Gradient Computations
For the Gradient descent (fmincon) optimization solver, the gradients are
computed using numerical perturbation:

3-11

3 Response Optimization

dx eps x x

dL x dx x

dR x d

typical  







  
 

3 1
10

max | |,

max ,

min
min

xx x

F opt fcn dL

F opt fcn dR

dF
dx

F F

dL dR

L

R

L R

,

_ ()

_ ()

max 




 
 

• x is a scalar design variable.

• xmin is the lower bound of x.

• xmax is the upper bound of x.

• xtypical is the scaled value of x.

• opt_fcn is the objective function.

dx is relatively large to accommodate simulation solver tolerances.

If you want to compute the gradients in any other way, you can do so in the cost
function you write for performing design optimization programmatically. See
sdo.optimize and GradFcn of sdo.OptimizeOptions for more information.

3-12

Specify Signals to Log

Specify Signals to Log
Design requirements require logged model signals. During optimization, the
model is simulated using the current value of the design variables and the
logged signal is used to evaluate the design requirements.

1 In the Design Optimization tool, select Signal in the New drop-down
list. A window opens where you select a signal to log.

2 In the Simulink model window, click the signal to which you want to add
a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

3 Select the signal and click to add it to the signal set.

4 In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool window.

See Also

• “Design Optimization to Track Reference Signal (GUI)”

• sdo.SimulationTest

3-13

3 Response Optimization

Specifying Step Response Characteristics

Specify Step Response Characteristics
To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of
your model.

In the Design Optimization Tool, click New. To apply this requirement to
a signal, select the Step Response Envelope entry in the New Time
Domain Requirement section of the New list. To apply this requirement
to a linearization of your model, select the Step Response Envelope
entry in the New Frequency Domain Requirement section of the New
list. The latter option requires Simulink Control Design software.

A window opens where you specify the step response requirements on
a signal, or system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:

3-14

Specifying Step Response Characteristics

&
�
��
���

��

'���

(�
	���	���

)����'���

*�)���

*�+,�������
*�������
�

������
��'���

*�%
��������
-
���	���	���

• Initial value: Input level before the step occurs

• Step time: Time at which the step takes place

• Final value: Input level after the step occurs

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined
as the final step value plus or minus the specified percentage of the
final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can
undershoot the initial value. This amount is specified as a percentage

3-15

3 Response Optimization

of the step’s range. The step’s range is the difference between the final
and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of
your Simulink model (requires Simulink Control Design software).

• Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which
you will apply the requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

3-16

Specifying Step Response Characteristics

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create
Linearization I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to
specify step response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Concepts • “Specify Time-Domain Design Requirements” on page 3-25
• “Specify Frequency-Domain Design Requirements” on page 3-43

3-17

3 Response Optimization

Specifying Custom Requirements
To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New
list. A window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in
the Function box. The field must be specified as a function handle using

@. The function must be on the MATLAB path. Click to review
or edit the function.

If the function does not exist, clicking opens a template MATLAB
file. Use this file to implement the custom requirement. The default
function name is myCustomRequirement.

5 (Optional) If you want to prevent the solver from considering specific
parameter combinations, select the Error if constraint is violated check
box. Use this option for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with
this option selected first.

• If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

• If the constraint is not violated, the solver evaluates the remaining
requirements for the current iterate. If any of the remaining
requirements bound signals or systems, then the solver simulates the
model .

For more information, see “Skip Model Simulation Based on Parameter
Constraint Violation (GUI)” on page 3-152.

3-18

Specifying Custom Requirements

Note If you select this check box, then do not specify signals or systems to
bound. If you do specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your
Simulink model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the
signal and linearization I/O selection area.

• Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check box.

If you have not selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

3-19

3 Response Optimization

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box. For more
information on using this dialog box, see “Create Linearization I/O
Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

3-20

Specifying Custom Requirements

Related
Examples

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105
• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122
• “Specify Time-Domain Design Requirements” on page 3-25
• “Specify Frequency-Domain Design Requirements” on page 3-43

3-21

3 Response Optimization

Move Constraints

In this section...

“Move Constraints Graphically” on page 3-22

“Position Constraints Exactly” on page 3-23

Constraint-bound edges define time-domain constraints you would like to
place on a particular signal in your model. You can position these edges,
which appear as a yellow shaded region bordered by a black line, graphically
or exactly.

Move Constraints Graphically
Use the mouse to click and drag edges in the amplitude versus time plot, as
shown in the following figure.

• To move a constraint edge boundary or to change the slope of a constraint
edge, position the pointer over a constraint edge endpoint, and press and
hold down the left mouse button. The pointer should change to a hand
symbol. While still holding the button down, drag the pointer to the target

3-22

Move Constraints

location, and release the mouse button. Note that the edges on either side
of the boundary might not maintain their slopes.

• To move an entire constraint edge up, down, left, or right, position the
mouse pointer over the edge and press and hold down the left mouse
button. The pointer should change to a four-way arrow. While still holding
the button down, drag the pointer to the target location, and release the
mouse button. Note that the edges on either side of the boundary might
not maintain their slopes.

To move a constraint edge to a perfectly horizontal or vertical position, hold
down the Shift key while clicking and dragging the constraint edge. This
causes the constraint edge to snap to a horizontal or vertical position.

When moving constraint bound edges, it is sometimes helpful to display
gridlines on the axes for careful alignment of the constraint bound edges. To
turn the gridlines on or off, right-click within the axes and select Grid.

Note You can move a lower bound constraint edge above an upper bound
constraint edge, or vice versa, but this produces an error when you attempt to
run the optimization.

Position Constraints Exactly
To position a constraint edge exactly:

1 Position the pointer over the edge you want to move and right-click. Select
Edit to open the Edit Design Requirement dialog box.

3-23

3 Response Optimization

2 Specify the position of each constraint edge in the Time and Amplitude
columns.

Concepts • “Specify Time-Domain Design Requirements” on page 3-25
• “Specify Frequency-Domain Design Requirements” on page 3-43

3-24

Specify Time-Domain Design Requirements

Specify Time-Domain Design Requirements

In this section...

“Specify Piecewise-Linear Lower and Upper Bounds” on page 5-4

“Specify Signal Property Requirements” on page 3-27

“Specify Step Response Characteristics” on page 5-32

“Track Reference Signals” on page 5-9

“Specify Custom Requirements” on page 5-35

“Edit Design Requirements” on page 5-14

Specify Piecewise-Linear Lower and Upper Bounds
To specify upper and lower bounds on a signal:

1 In the Design Optimization tool, select Signal Bound in the New
drop-down list. A window opens where you specify upper or lower bounds
on a signal.

2 Specify a requirement name in the Name box.

3 Select the requirement type using the Type list.

4 Specify the edge start and end times and corresponding amplitude in the
Time (s) and Amplitude columns.

5 Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Signals to Bound area, select a logged signal to apply the
requirement to.

If you have already selected signals, as described in “Specify Signals to Log”
on page 3-13, they appear in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

3-25

3 Response Optimization

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

7 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

3-26

Specify Time-Domain Design Requirements

Alternatively, you can add a Check Custom Bounds block to your model to
specify piecewise-linear bounds.

Specify Signal Property Requirements
To specify signal property requirements:

1 In the Design Optimization tool, select Signal Property in the New
drop-down list. The Create Requirement window opens where you specify
signal property requirements.

2 In the Name box, specify a requirement name.

3 In the Specify Property area, specify a signal property requirement using
the Property and Type lists and the Bound box.

Property List

For a signal S t S tN(), , ()0  you can specify one of the following properties
using the Property list:

• Signal minimum — min(S)

• Signal maximum — max(S)

• Signal final value — S tN()

• Signal mean — mean(S)

• Signal median — median(S)

• Signal variance — variance(S)

• Signal interquartile range— Difference between the 75th and 25th
percentiles of the signal values.

• Signal sum — S i
i t

tN

()



0

• Signal sum square — S i
i t

tN

()2

0


3-27

3 Response Optimization

• Signal sum absolute — S i
i t

tN

()



0

Custom Signal Property

You can add a custom signal property to the Property list by editing the
function sdo.requirements.signalPropertyFcns.

a At the MATLAB command prompt., enter edit
sdo.requirements.signalPropertyFcns.

b Add your signal property function to the FcnData cell array.

Your signal property function must be on the path.

4 In the Select Signals to Bound area, select the logged signal to which
you want to apply the requirement.

If you have already selected a signal, as described in “Specify Signals to
Log” on page 3-13, the signal appears in the list. Select the corresponding
check box for that signal.

If you have not selected a signal to log:

a Click . The Create Signal Set window opens where you specify
the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

3-28

Specify Time-Domain Design Requirements

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. An iteration plot depicting the signal property
for each iteration also appears in the Design Optimization tool window.

Specify Step Response Characteristics
To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of
your model.

In the Design Optimization Tool, click New. To apply this requirement to
a signal, select the Step Response Envelope entry in the New Time
Domain Requirement section of the New list. To apply this requirement
to a linearization of your model, select the Step Response Envelope

3-29

3 Response Optimization

entry in the New Frequency Domain Requirement section of the New
list. The latter option requires Simulink Control Design software.

A window opens where you specify the step response requirements on
a signal, or system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:
&
�
��
���

��

'���

(�
	���	���

)����'���

*�)���

*�+,�������
*�������
�

������
��'���

*�%
��������
-
���	���	���

• Initial value: Input level before the step occurs

• Step time: Time at which the step takes place

• Final value: Input level after the step occurs

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

3-30

Specify Time-Domain Design Requirements

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined
as the final step value plus or minus the specified percentage of the
final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can
undershoot the initial value. This amount is specified as a percentage
of the step’s range. The step’s range is the difference between the final
and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of
your Simulink model (requires Simulink Control Design software).

• Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which
you will apply the requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

3-31

3 Response Optimization

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box.

3-32

Specify Time-Domain Design Requirements

For more information on using this dialog box, see “Create
Linearization I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to
specify step response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Track Reference Signals
Use reference tracking to force a model signal to match a desired signal.

To track a reference signal:

1 In the Design Optimization tool, select Signal Tracking in the New
drop-down list. A window opens where you specify the reference signal
to track.

2 Specify a requirement name in the Name box.

3 Define the reference signal by entering vectors, or variables from the
workspace, in the Time vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time
vector as the reference signal.

4 Specify how the optimization solver minimizes the error between the
reference and model signals using the Tracking Method list:

• SSE — Reduces the sum of squared errors

• SAE — Reduces the sum of absolute errors

3-33

3 Response Optimization

5 In the Specify Signal to Track Reference Signal area, select a logged
signal to apply the requirement to.

If you already selected a signal to log, as described in “Specify Signals
to Log” on page 3-13, they appear in the list. Select the corresponding
check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

e Select the check-box corresponding to the signal and click OK.

3-34

Specify Time-Domain Design Requirements

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the signal bound also
appears in the Design Optimization tool window.

Note When tracking a reference signal, the software ignores the maximally
feasible solution option. For more information on this option, see “Selecting
Optimization Termination Options” on page 3-79.

Alternatively, you can use the Check Against Reference block to specify
a reference signal to track.

See Also

“Design Optimization to Track Reference Signal (GUI)”

Specify Custom Requirements
To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New
list. A window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in
the Function box. The field must be specified as a function handle using

@. The function must be on the MATLAB path. Click to review
or edit the function.

If the function does not exist, clicking opens a template MATLAB
file. Use this file to implement the custom requirement. The default
function name is myCustomRequirement.

5 (Optional) If you want to prevent the solver from considering specific
parameter combinations, select the Error if constraint is violated check
box. Use this option for parameter-only constraints.

3-35

3 Response Optimization

During an optimization iteration, the solver evaluates requirements with
this option selected first.

• If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

• If the constraint is not violated, the solver evaluates the remaining
requirements for the current iterate. If any of the remaining
requirements bound signals or systems, then the solver simulates the
model .

For more information, see “Skip Model Simulation Based on Parameter
Constraint Violation (GUI)” on page 3-152.

Note If you select this check box, then do not specify signals or systems to
bound. If you do specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your
Simulink model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the
signal and linearization I/O selection area.

• Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check box.

If you have not selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

3-36

Specify Time-Domain Design Requirements

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box. For more

3-37

3 Response Optimization

information on using this dialog box, see “Create Linearization I/O
Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position
constraint segments and to edit other properties of these constraints. The
dialog box has two main components:

• An upper panel to specify the constraint you are editing

• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the
image in the following figure.

In the context of the SISO Tool in Control System Toolbox™ software, Design
requirement refers to both the particular editor within the SISO Tool
that contains the requirement and the particular requirement within that
editor. To edit other constraints within the SISO Tool, select another design
requirement from the drop-down menu.

3-38

Specify Time-Domain Design Requirements

Edit Design Requirement Dialog Box Parameters
The particular parameters shown within the lower panel of the Edit Design
Requirement dialog box depend on the type of constraint/requirement. In
some cases, the lower panel contains a grid with one row for each segment and
one column for each constraint parameter. The following table summarizes
the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time
response bounds on step
and impulse response plots

Defines the time range of a segment
within a constraint/requirement.

Amplitude Upper and lower time
response bounds on step
and impulse response plots

Defines the beginning and ending
amplitude of a constraint segment.

Slope (1/s) Upper and lower time
response bounds

Defines the slope, in 1/s, of a
constraint segment. It is an
alternative method of specifying the
magnitude values. Entering a new
Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step’s range
used to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a
particular settling time.

% Settling Step response bounds The percentage of the final value that
defines the settling region used to
describe the settling time.

3-39

3 Response Optimization

Edit Design Requirement Dialog Box Parameters (Continued)

Parameter Found in Description

% Overshoot Step response bounds

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

3-40

Edit Design Requirements

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position
constraint segments and to edit other properties of these constraints. The
dialog box has two main components:

• An upper panel to specify the constraint you are editing

• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the
image in the following figure.

In the context of the SISO Tool in Control System Toolbox software, Design
requirement refers to both the particular editor within the SISO Tool
that contains the requirement and the particular requirement within that
editor. To edit other constraints within the SISO Tool, select another design
requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters
The particular parameters shown within the lower panel of the Edit Design
Requirement dialog box depend on the type of constraint/requirement. In
some cases, the lower panel contains a grid with one row for each segment and
one column for each constraint parameter. The following table summarizes
the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time
response bounds on step
and impulse response plots

Defines the time range of a segment
within a constraint/requirement.

Amplitude Upper and lower time
response bounds on step
and impulse response plots

Defines the beginning and ending
amplitude of a constraint segment.

3-41

3 Response Optimization

Edit Design Requirement Dialog Box Parameters (Continued)

Parameter Found in Description

Slope (1/s) Upper and lower time
response bounds

Defines the slope, in 1/s, of a
constraint segment. It is an
alternative method of specifying the
magnitude values. Entering a new
Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step’s range
used to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a
particular settling time.

% Settling Step response bounds The percentage of the final value that
defines the settling region used to
describe the settling time.

% Overshoot Step response bounds

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

3-42

Specify Frequency-Domain Design Requirements

Specify Frequency-Domain Design Requirements

In this section...

“Specify Lower Bounds on Gain and Phase Margin” on page 5-17

“Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response” on page 5-19

“Specify Bound on Closed-Loop Peak Gain” on page 5-21

“Specify Lower Bound on Damping Ratio” on page 5-23

“Specify Upper and Lower Bounds on Natural Frequency” on page 5-25

“Specify Upper Bound on Approximate Settling Time” on page 5-27

“Specify Piecewise-Linear Upper and Lower Bounds on Singular Values”
on page 5-29

“Specify Step Response Characteristics” on page 5-32

“Specify Custom Requirements” on page 5-35

Specify Lower Bounds on Gain and Phase Margin
To specify lower bounds on the gain and phase margin of a linear system:

1 In the Design Optimization tool, select Gain and Phase Margin in the
New list. A window opens where you specify lower bounds on the gain and
phase margin of your linear system.

2 Specify a requirement name in Name.

3 Specify bounds on the gain margin or phase margin, or both.

3-43

3 Response Optimization

• Gain margin— Amount of gain increase or decrease required to make
the loop gain unity at the frequency where the phase angle is –180°.

• Phase margin — Amount of phase increase or decrease required to
make the phase angle –180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both,
select the corresponding check box and enter the lower bound value.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

3-44

Specify Frequency-Domain Design Requirements

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Gain and Phase Margins block to specify
bounds on the gain and phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds
on Frequency Response
To specify upper or lower bounds on the magnitude of a system response:

1 In the Design Optimization tool, select Bode Magnitude in the New
list. A window opens where you specify the lower or upper bounds on the
magnitude of the system response.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the edge start and end frequencies and corresponding magnitude in
the Frequency and Magnitude columns.

3-45

3 Response Optimization

5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool window.
A graphical display of the requirement also appears in the Design
Optimization tool window.

3-46

Specify Frequency-Domain Design Requirements

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Bode Characteristics block to specify
bounds on the magnitude of the system response. (Requires Simulink Control
Design.)

Specify Bound on Closed-Loop Peak Gain
To specify an upper bound on the closed-loop peak response of a system:

1 In the Design Optimization tool, select Closed-Loop Peak Gain in the
New list. A window opens where you specify an upper bound on the
closed-loop peak gain of the system.

2 Specify a requirement name in the Name box.

3-47

3 Response Optimization

3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop
peak gain box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool window.
A graphical display of the requirement also appears in the Design
Optimization tool window.

3-48

Specify Frequency-Domain Design Requirements

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Nichols Characteristics block to specify
bounds on the magnitude of the system response. (Requires Simulink Control
Design.)

Specify Lower Bound on Damping Ratio
To specify a lower bound on the damping ratio of the system:

1 In the Design Optimization tool, select Damping Ratio in the New list. A
window opens where you specify an upper bound on the damping ratio of
the system.

3-49

3 Response Optimization

2 Specify a requirement name in the Name box.

3 Specify the lower bound on the damping ratio in the Damping ratio box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

3-50

Specify Frequency-Domain Design Requirements

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
a bound on the damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural
Frequency
To specify a bound on the natural frequency of the system:

1 In the Design Optimization tool, select Natural Frequency in the New
list. A window opens where you specify a bound on the natural frequency of
the system.

3-51

3 Response Optimization

2 Specify a requirement name in the Name box.

3 Specify a lower or upper bound on the natural frequency in the Natural
frequency box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

3-52

Specify Frequency-Domain Design Requirements

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
a bound on the natural frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time
To specify an upper bound on the approximate settling time of the system:

1 In the Design Optimization tool, select Settling Time in the New list.
A window opens where you specify an upper bound on the approximate
settling time of the system.

2 Specify a requirement name in the Name box.

3-53

3 Response Optimization

3 Specify the upper bound on the approximate settling time in the Settling
time box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

3-54

Specify Frequency-Domain Design Requirements

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
the approximate settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds
on Singular Values
To specify piecewise-linear upper and lower bounds on the singular values
of a system:

3-55

3 Response Optimization

1 In the Design Optimization tool, select Singular Values in the New
list. A window opens where you specify the lower or upper bounds on the
singular values of the system.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the edge start and end frequencies and corresponding magnitude in
the Frequency and Magnitude columns, respectively.

5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

3-56

Specify Frequency-Domain Design Requirements

7 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Singular Value Characteristics block to
specify bounds on the singular value. (Requires Simulink Control Design.)

3-57

3 Response Optimization

Specify Step Response Characteristics
To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of
your model.

In the Design Optimization Tool, click New. To apply this requirement to
a signal, select the Step Response Envelope entry in the New Time
Domain Requirement section of the New list. To apply this requirement
to a linearization of your model, select the Step Response Envelope
entry in the New Frequency Domain Requirement section of the New
list. The latter option requires Simulink Control Design software.

A window opens where you specify the step response requirements on
a signal, or system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:

&
�
��
���

��

'���

(�
	���	���

)����'���

*�)���

*�+,�������
*�������
�

������
��'���

*�%
��������
-
���	���	���

3-58

Specify Frequency-Domain Design Requirements

• Initial value: Input level before the step occurs

• Step time: Time at which the step takes place

• Final value: Input level after the step occurs

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined
as the final step value plus or minus the specified percentage of the
final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can
undershoot the initial value. This amount is specified as a percentage
of the step’s range. The step’s range is the difference between the final
and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of
your Simulink model (requires Simulink Control Design software).

• Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which
you will apply the requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

3-59

3 Response Optimization

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

3-60

Specify Frequency-Domain Design Requirements

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create
Linearization I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to
specify step response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Specify Custom Requirements
To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New
list. A window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in
the Function box. The field must be specified as a function handle using

@. The function must be on the MATLAB path. Click to review
or edit the function.

If the function does not exist, clicking opens a template MATLAB
file. Use this file to implement the custom requirement. The default
function name is myCustomRequirement.

3-61

3 Response Optimization

5 (Optional) If you want to prevent the solver from considering specific
parameter combinations, select the Error if constraint is violated check
box. Use this option for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with
this option selected first.

• If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

• If the constraint is not violated, the solver evaluates the remaining
requirements for the current iterate. If any of the remaining
requirements bound signals or systems, then the solver simulates the
model .

For more information, see “Skip Model Simulation Based on Parameter
Constraint Violation (GUI)” on page 3-152.

Note If you select this check box, then do not specify signals or systems to
bound. If you do specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your
Simulink model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the
signal and linearization I/O selection area.

• Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check box.

If you have not selected a signal to log:

a Click . A window opens where you specify the logged signal.

3-62

Specify Frequency-Domain Design Requirements

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

3-63

3 Response Optimization

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box. For more
information on using this dialog box, see “Create Linearization I/O
Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122

3-64

Specify Design Variables

Specify Design Variables
Before running the optimization, you must define the model parameters to
optimize. These parameters form the design variables set for optimization. By
tuning these parameters, Simulink Design Optimization software attempts to
make the signals meet the requirements.

Simulink Design Optimization software optimizes the response signals of
the model by varying the tuned parameters so that the response signals lie
within the constraint bound segments or closely match a specified reference
signal. The design variables can be scalar, vector, matrix, or an expression
that evaluates to one of these values.

To specify the parameters to be tuned using the Design Optimization tool:

1 In the Design Variables Set list, select New.

A window opens where you specify design variables. All model parameters
are displayed in this window.

2 Select one or more parameter names and click

to add the selected parameters to a design variables set.

Note You can add the same parameter to multiple design variable sets.

3 (Optional) Specify design variable settings.

Setting Description Default

Variable The name of the parameter. Not an editable field

Value Value of the model parameter. This value is used
by the optimization method as the initial value
and is modified during optimization.

Current value of the parameter
in the model. If you edit this
column, click Update model
variable values to update the
values in the model.

3-65

3 Response Optimization

Setting Description Default

Minimum The minimum value or lower bound for the
parameter. You can edit this field to provide an
alternate minimum value.

-Inf

Maximum The maximum value or upper bound for the
parameter. You can edit this field to provide an
alternate maximum value.

Inf

Scale During optimization, the design variables are
scaled, or normalized, by dividing their current
value by a scale value. You can edit this field to
provide an alternate scaling factor.

1

The check-box indicates whether the parameter is selected as an design
variable in the set. Select it if you want this parameter to be tuned during
the optimization. Unselect if you do not want this parameter to be tuned
during the optimization but you would like to keep it on the list of tuned
parameters (for a subsequent optimization).

Expand Variable Detail to see the block in the model that contains this
parameter.

4 Click OK to create a design variable set.

Related
Examples

• “Specify Independent Parameters to Optimize” on page 3-67
• “Optimize Parameters for Robustness (GUI)” on page 3-162
• “Update Model with Design Variables Set” on page 3-71
• “Export Design Variable Values for Specific Iteration” on page 3-98

3-66

Specify Independent Parameters to Optimize

Specify Independent Parameters to Optimize
This example shows how to specify independent parameters, that do not
appear explicitly in the model, as optimization parameters.

Assume that the parameter Kint in the model srotut1 is related to the
parameters x and y according to the relationship Kint=x+y. Also assume
that the initial values of x and y are 1 and -0.7, respectively. To tune x and
y instead of Kint, first define these parameters in the model workspace. To
do this,

1 Open the Simulink model.

open_system('srotut1')

2 Add the independent parameters to the model workspace, along with their
initial values.

• Select View > Model Explorer from the srotut1 window to open the
Model Explorer window.

• In the Model Hierarchy tree, select srotut1 > Model Workspace.

3-67

3 Response Optimization

• Select Add > MATLAB Variable to add a new variable to the model
workspace. A new variable with a default name Var appears in the
Name column.

• Double-click Var to make it editable and change the variable name to x.
Edit the initial Value to 1.

• Repeat steps 3 and 4 to add a variable y with an initial value of -0.7.

The Model Explorer window resembles the following figure.

3-68

Specify Independent Parameters to Optimize

3 Define a Simulation Start function that runs before each simulation of the
model. This Simulation Start function defines the relationship between the
dependent parameters in the model and the independent parameters in
the model workspace.

• In the srotut1model window, select File > Model Properties > Model
Properties.

• In the Model Properties window, click the Callbacks tab.

• To enter a Simulation start function, select StartFcn, and type the
name of a new function. For example, type srotut1_start in the
Simulation start function panel. Then, click OK.

• Create a MATLAB file named srotut1_start.

The content of the file defines the relationship between the parameters
in the model and the parameters in the workspace. For this example,
the content resembles the following:

3-69

3 Response Optimization

wks = get_param(gcs, 'ModelWorkspace')
x = wks.evalin('x')
y = wks.evalin('y')
Kint = x+y;

Note You must first use get_param to get the variables independent
variables, x and y, from the model workspace. Then define the dependent
variable, Kint, in terms of the independent variables.

When you add a new design or uncertain parameter, x and y appear in the
dialog box.

Caution Avoid adding independent parameters together with their
corresponding dependent parameters to the lists of tuned and uncertain
parameters. Otherwise, the optimization could give incorrect results. For
example, when a parameter c depends on the parameters a and b avoid
adding all three parameters to the lists.

Related
Examples

• “Specify Design Variables” on page 3-65

3-70

Update Model with Design Variables Set

Update Model with Design Variables Set
This example shows how to update a model with a set of design variables.

Open the Simulink model and load the preconfigured Design Optimization
tool session.

load('pidtune_demo_sdosession_update_dv.mat')
sdotool(SDOSessionData)

The Design Optimization tool opens and loads the preconfigured session.
In the Design Optimization Workspace, DesignVars1 is a set of tuned
design variables.

In theDesign Variables Set list, select the design variable set, DesignVars1.

Open the Edit dialog box.

Click for the Design Variable Set list.

Select the variables you want to update in the model.

For this example, select Kd, Ki, and Kp.

3-71

3 Response Optimization

Click Update model variables.

Plot the model response.

In the Response Optimization tab, click Plot Current Response.

Related
Examples

• “Export Design Variable Values for Specific Iteration” on page 3-98

3-72

General Options

General Options

In this section...

“Accessing General Options” on page 3-73

“Progress Options” on page 3-73

“Result Options” on page 3-74

Accessing General Options
You can set optimization progress and result options. To set these options,
click Options in the Design Optimization tool. A window opens. Select the
General Options tab.

Progress Options
You can specify options related to optimization progress using the options in
the Progress Options area.

3-73

3 Response Optimization

• Show optimization progress window during optimization

Opens an optimization progress window during optimization. The window
displays information such as constraint violations and cost function if
Display level is Iteration. The window is updated at the end of the
optimization with the termination information such as whether the
optimization converged.

• Update plots during optimization

Updates model response and design variable plots at each optimization
iteration.

Result Options
You can specify options for optimization results in the Result Options area.

• Update model at end of optimization

Updates optimized parameter values in the Simulink model after the
optimization terminates.

• Save optimization termination information

3-74

General Options

Saves termination information returned by the optimization solver as a
variable named info in the Design Optimization Workspace. info is a
structure with one or more of the following fields:

- F — Optimized cost (objective) value.

- Cleq— Optimized nonlinear inequality constraint violations.

The field appears if the optimization problem includes a nonlinear
inequality constraint.

The value is a mx1 vector. Positive values indicate that the constraint
has not been satisfied. Check exitflag to confirm that the optimization
succeeded.

- Ceq— Optimized nonlinear equality constraint violations.

The field appears if the optimization problem includes a nonlinear
equality constraint.

The value is a double rx1 vector. Any nonzero values indicate that the
constraint has not been satisfied. Check exitflag to confirm that the
optimization succeeded.

- Gradients— Cost and constraint gradients at the optimized parameter
values. See “How the Optimization Algorithm Formulates Minimization
Problems” on page 3-3 on how the solver computes gradients.

This field appears if the solver specified in the Method property of
sdo.OptimizeOptions computes gradients.

The value is a structure.

- exitflag — Integer identifying the reason the algorithm terminated.
See fmincon, patternsearch and fminsearch for a list of the values and
the corresponding termination reasons.

- iterations — Number of optimization iterations

- SolverOutput — A structure with solver-specific output information.
The fields of this structure depends on the optimization solver specified
in the Method property of sdo.OptimizeOptions. See fmincon,
patternsearch and fminsearch for a list of solver outputs and their
description.

3-75

3 Response Optimization

- Stats — A structure that contains statistics collected during
optimization, such as start and end times, number of function
evaluations and restarts.

• Design variable sets

- Overwrite optimized variable values in design variable set

Overwrites the optimized model parameter values in the design variable
set variable used in the optimization. You can see the updated values in
the Value field.

- Save optimized variable values as new design variable set

Creates a new variable in the Design Optimization Workspace that
contains the optimized parameter values. To update the model with
the optimized parameter values, select the variable in the Design

Variables Set list. Open the Edit dialog box by clicking . Select the
parameters of interest and click Update model variables.

3-76

Optimization Options

Optimization Options

In this section...

“Accessing Optimization Options” on page 3-77

“Selecting Optimization Methods” on page 3-78

“Selecting Optimization Termination Options” on page 3-79

“Selecting Additional Optimization Options” on page 3-80

Accessing Optimization Options
You can set several options for the optimization. These options include the
optimization methods and the tolerances the methods use.

To set optimization options, click Options in the Design Optimization tool. A
window opens. Select the Optimization Options tab.

3-77

3 Response Optimization

Selecting Optimization Methods
Both the Method and Algorithm options in the Optimization method
area define the optimization method.

The choices for the Method option are:

• Gradient descent (default) — Uses the Optimization Toolbox function
fmincon to optimize the response signal subject to the constraints.

The Algorithm options for Gradient descent are:

Algorithm Option Learn More

Sequential Quadratic
Programming (default)

“fmincon SQP Algorithm”
in the Optimization Toolbox
documentation.

Active-Set “fmincon Active Set Algorithm”
in the Optimization Toolbox
documentation.

Interior-Point “fmincon Interior Point Algorithm”
in the Optimization Toolbox
documentation.

Trust-Region-Reflective “fmincon Trust Region Reflective
Algorithm” in the Optimization
Toolbox documentation.

• Pattern search — Uses the Global Optimization Toolbox function
patternsearch, an advanced direct search method, to optimize the
response. This option requires the Global Optimization Toolbox.

• Simplex search— Uses the Optimization Toolbox function fminsearch,
a direct search method, to optimize the response. Simplex search is

3-78

Optimization Options

most useful for simple problems and is sometimes faster than Gradient
descent for models that contain discontinuities.

For more information on the problem formulations for each optimization
method, see “How the Optimization Algorithm Formulates Minimization
Problems” on page 3-3.

Selecting Optimization Termination Options
Use the Optimization options panel to specify when you want the
optimization to terminate.

• Parameter tolerance: The optimization terminates when successive
parameter values change by less than this number. For more details,
refer to the discussion of the parameter TolX in the reference page for the
Optimization Toolbox function fmincon.

• Constraint tolerance: This number determines the maximum limit
by which the constraints can be violated, and still allow a successful
convergence.

• Function tolerance: The optimization terminates when successive
function values are less than this value. Changing the default Function
tolerance value is only useful when you are tracking a reference signal or
using the Simplex searchmethod. For more details, refer to the discussion
of the parameter TolFun in the reference page for the Optimization Toolbox
function fmincon.

• Maximum iterations: The maximum number of iterations allowed.
The optimization terminates when the number of iterations exceeds this
number.

• Look for maximally feasible solution: When selected, the optimization
continues after it has found an initial, feasible solution, until it finds a
maximally feasible, optimal solution. When this option is unselected, the

3-79

3 Response Optimization

optimization terminates as soon as it finds a solution that satisfies the
constraints and the resulting response signal sometimes lies very close
to the constraint segment. In contrast, a maximally feasible solution is
typically located further inside the constraint region.

Note If selected, the software ignores this option when tracking a
reference signal.

By varying these parameters you can force the optimization to continue
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
At the bottom of the Optimization Options panel is a group of additional
optimization options.

• “Display Level” on page 3-80

• “Restarts” on page 3-81

Display Level
The Display level option specifies the form of the output that appears in the
Optimization Progress window. The options are:

• Iterations (default) — Displays information after each iteration

• Off — Turns off all output display

• Notify— Displays output only if the function does not converge

• Final — Displays only the final output

For more information on the type of iterative output that appears for
the method you selected in Method, see the discussion of output for the
corresponding function.

3-80

Optimization Options

Method Function Output Information

Gradient
descent

fmincon fmincon section of “Function-Specific
Headings” in the Optimization
Toolbox documentation

Simplex
search

fminsearch fminsearch section of
“Function-Specific Headings” in the
Optimization Toolbox documentation

Pattern
search

patternsearch “Display to Command Window
Options” in the Global Optimization
Toolbox documentation

Restarts
In some optimizations, the Hessian may become ill-conditioned and the
optimization does not converge. In these cases, it is sometimes useful to
restart the optimization after it stops, using the endpoint of the previous
optimization as the starting point for the next one. To automatically restart
the optimization, indicate the number of times you want to restart in this field.

3-81

3 Response Optimization

Create Linearization I/O Sets
This example shows how to create a linearization input/output set using the
Design Optimization Tool.

You create a linearization input/output set using the Create Linearization I/O
Set dialog box. This dialog box may be accessed in two ways:

• In the Design Optimization tool, select Linearization I/Os in the New
drop-down list.

• In a requirement dialog box, in the Select Systems to Bound area, click

.

Create Linearization I/O Set
To create a new linearization I/O set:

1 In your Simulink model, select a signal that you want to define as a
linearization input or output point.

The selected signal appears in the Create linearization I/O set dialog box
under Currently selected signals.

3-82

Create Linearization I/O Sets

2 In the Create linearization I/O set dialog box, click the signal name under
Currently selected signals.

3 Click Add. The signal appears in the list of Analysis I/Os.

4 Select the linearization point type from the Configuration drop-down
list. For example:

• If you want the selected signal to be a linearization output point, select
Output Measurement.

• If you want the signal to be an open-loop output point, select Open-loop
Output.

5 Repeat steps 1–4 for any other signals you want to define as linearization
I/O points.

Tip To highlight in the Simulink model the blocks that are included in the
linearization specified by the current list of Analysis I/Os, click Highlight.

6 After you define all the signals for the I/O set, enter a name for the I/O set
in the Variable name field located at the top-left of the window.

7 Click OK.

3-83

3 Response Optimization

Linearization Options

In this section...

“Accessing Linearization Options” on page 3-84

“Configuring Linearization Options” on page 3-84

Accessing Linearization Options
If you have Simulink Control Design, you can set several options for
linearization. These options include the linearization methods and the sample
time of the linear systems.

To set linearization options, click Options in the Design Optimization tool. A
window opens. Select the Linearization Options tab.

Configuring Linearization Options

Models with Time Delays
Simulink Control Design lets you choose whether to linearize models using
exact representation or Pade approximation of continuous time delays. How
you treat time delays during linearization depends on your nonlinear model.

3-84

Linearization Options

Simulink blocks that model time delays are:

• Transport Delay block

• Variable Time Delay block

• Variable Transport Delay block

• Delay block

• Unit Delay block

By default, linearization uses Pade approximation for representing time
delays in your linear model.

Use Pade approximation to represent time delays when:

• Applying more advanced control design techniques to your linear plant,
such as LQR or H-infinity control design.

• Minimizing the time to compute a linear model.

Specify to linearize with exact time delays for:

• Minimizing errors that result from approximating time delays

• PID tuning or loop-shaping control design methods in Simulink Control
Design

• Discrete-time models (to avoid introducing additional states to the model)

The software treats discrete-time delays as internal delays in the linearized
model. Such delays do not appear as additional states in the linearized
model.

Specify How Delays are Treated. To specify whether the linearization
should approximate delays or use them exactly, set the Use exact delays
check box appropriately.

Linearization Sampling Time
To specify the sampling time of the linearized model, use the Linear system
sample time box. By default, the software chooses the slowest applicable
sampling time. Use 0 to specify a continuous-time linear model.

3-85

3 Response Optimization

Linearization Rate Conversion Method
When you linearize models with multiple sample times, such as a discrete
controller with a continuous plant, a rate conversion algorithm generates a
single-rate linear model. The rate conversion algorithm affects linearization
results.

Rate Conversion Method When to Use

Zero-Order Hold Use when you need exact
discretization of continuous
dynamics in the time-domain for
staircase inputs.

Tustin Use when you need good
frequency-domain matching between
a continuous-time system and the
corresponding discretized system, or
between an original system and the
resampled system.

Tustin with Prewarping Use when you need good
frequency domain matching at
a particular frequency between the
continuous-time system and the
corresponding discretized system, or
between an original system and the
resampled system.

Upsampling when possible
(Zero-Order Hold, Tustin, and
Tustin with Prewarping)

Upsample discrete states when
possible to ensure gain and phase
matching of upsampled dynamics.
You can only upsample when the
new sample time is an integer
multiple of the sampling time of
the original system. Otherwise,
the software uses an alternate rate
conversion method.

3-86

Plots in the Design Optimization Tool

Plots in the Design Optimization Tool

In this section...

“Adding Plots in Design Optimization Tool” on page 3-87

“Plotting Current Response” on page 3-87

“Plotting Intermediate Steps” on page 3-87

“Modifying Plot Properties” on page 3-88

“Plot Types” on page 3-89

“Export Design Variables and Requirement Values for an Iteration” on
page 3-92

Adding Plots in Design Optimization Tool
To create a new plot or to add to an existing plot in the Design Optimization
Tool, choose the variable to plot in the Data to Plot list. Then select the plot
type using the Add Plot list. The Add Plot list has entries for the supported
plot types for the given plot variable.

Plotting Current Response
To display the current response, click Plot Current Response in the
Response Optimization tab or the Figure tab of the Design Optimization
tool. The current response appears as a thick line.

Plotting Intermediate Steps
To turn on, or off, the display of the response signal at intermediate steps
during the optimization, right-click within the white space in the plot and
select Responses > Show Iteration Responses. The response at an
intermediate step is based on parameter values at that intermediate point in
the optimization.

3-87

3 Response Optimization

Modifying Plot Properties

Modifying Properties of Response Plots
Right-click the white space in a plot and select Axes Properties to open the
Property Editor dialog box.

This figure shows the Property Editor dialog box for a step response.

In general, you can change the following properties of response plots.

• Labels — Titles and X- and Y-labels

To specify new text for plot titles and axis labels, type the new string in the
field next to the label you want to change. The label changes immediately
as you type, so you can see how the new text looks as you are typing.

• Limits — Numerical ranges of the x- and y- axes

Default values for the axes limits make sure that the maximum and
minimum x and y values are displayed. If you want to override the default
settings, change the values in the Limits pane fields. The Auto-Scale
check box automatically clears if you click a different field. The new limits
appear immediately in the response plot.

To reestablish the default values, select the Auto-Scale check box again.

3-88

Plots in the Design Optimization Tool

• Units — Units where applicable (e.g., rad/s to Hertz). If you cannot
customize units, the Property Editor displays that no units are available
for the selected plot.

• Style — Show a grid, adjust font properties, such as font size, bold and
italics, and change the axes foreground color

• Options—Change options where applicable. These include peak response,
settling time, phase and gain margins, etc. Plot options change with each
plot response type. The Property Editor displays only the options that
make sense for the selected response plot. For example, phase and gain
margins are not available for step responses.

Plot Types

• “Response Plots” on page 3-89

• “Spider Plots” on page 3-90

• “Iteration Plots” on page 3-91

Response Plots
You can view model signals and the requirements applied to the signal
using a response plot. You can also plot the frequency response of a system
(requires Simulink Control Design).

The response plot shows the system response as it varies during optimization.
You can also view the uncertain system responses in the plot.

3-89

3 Response Optimization

Tip To select the responses and systems displayed in a given plot, right-click
on the plot and use the Systems and Responses menu.

Spider Plots
You can compare the values of design variable sets or evaluated requirements
using a spider plot.

Spider plots depict multivariate data using an axis for each variable. The
various axes are arranged clockwise and have a common intersecting point, as
this example shows:

3-90

Plots in the Design Optimization Tool

Tip To view only some of the requirement values in a given plot, right-click
on the plot and select the requirements in the Show list.

For information on using a spider plot to compare design variables sets or
evaluated requirements, see “Compare Requirements and Design Variables
Using Spider Plot” on page 3-94

Iteration Plots
You can plot the values of design variables and requirements as they vary
during optimization using an iteration plot.

Iteration plots depict the value of the plot variable(s) for each iteration. The
x-axis represents the iteration number, as this example shows:

3-91

3 Response Optimization

You can export the values of a plotted variable for a given iteration. For more
information, see “Export Design Variables and Requirement Values for an
Iteration” on page 3-92.

Tip To view scaled values of the plotted variable(s), right-click on the plot
and select Show scaled values.

Export Design Variables and Requirement Values for
an Iteration
To export the values of design variables or requirements:

1 Open the Export Iteration Data dialog box.

Right-click on the iteration plot and select Export.

2 Specify the plotted variable that you want to export using the Data to
export list.

3-92

Plots in the Design Optimization Tool

3 Specify the iteration for which you want to export data in the Iteration(s)
to export box.

To specify multiple iterations, use a vector of integers. For example, [0
2 5].

4 Specify the variable name for the exported data using the Export to a
variable named box.

5 Export the data to the Design Optimization Workspace.

ClickOK. The exported data variable appears in theDesign Optimization
Workspace.

Note The iteration number is added as a suffix to the exported data
variable name.

3-93

3 Response Optimization

Compare Requirements and Design Variables Using Spider
Plot

This example shows how to use a spider plot to compare requirement
evaluations before and after optimizing the response. You can use a similar
procedure to compare the values of sets of design variables.

Open the Simulink model and load the pre-configured Design Optimization Tool
session.

For this example, which uses a distillation column model, the step response
requirements are preconfigured and loaded in the model workspace.

1 Open the distillation model.

sys = 'distillation_demo';
open_system(sys)

2 Open the Design Optimization Tool.

In the Simulink model window, select Analysis > Response
Optimization.

Alternatively, click the Response Optimization GUI with preloaded
data block in the model and skip the next step.

3 Load the preconfigured Design Optimization Tool session.

Click the Design Optimization tab. In the Open drop-down list, select
Open from model workspace. A window opens where you select the
Design Optimization Tool session to load. Select distillation_optim
and click OK.

The preconfigured step response requirements are loaded in the Design
Optimization Tool.

Evaluate the requirement before optimization.

In the Response Optimization tab, click Evaluate Requirements.

3-94

Compare Requirements and Design Variables Using Spider Plot

A new variable, ReqValues, containing the evaluation of the requirements
appears in the Design Optimization Workspace.

When optimizing the model response, you create a set of requirements that it
must satisfy. If the requirements are violated, meaning that they evaluate
to nonnegative values, the design variables must be optimized. After the
optimization, you can compare the original requirement value with the
requirement evaluated using the optimized design variable values.

Plot the requirement value before optimization.

1 In the Data to Plot list, select ReqValues.

2 In the Add Plot list, select Spider plot.

The plot has an axis for each edge-and-signal combination defined in the
distillation_demo/Desired Step Response check block. Points on each

3-95

3 Response Optimization

axis represent the violation for that signal-edge combination and the plot
connects these points to form a closed polygon representing the initial design.
Note that some points are negative, representing satisfied constraints, and
some positive, representing violated constraints.

Optimize the model.

Click Optimize.

A new variable, ReqValues1, containing the evaluation of the requirements
using the optimized design variables appears in the Design Optimization
Workspace.

Compare the requirement values before and after optimization.

1 In the Data to Plot list, select ReqValues1.

2 In the Add Plot list, select Spider plot 1.

3-96

Compare Requirements and Design Variables Using Spider Plot

The optimized requirement values, ReqValues1, are all negative or zero,
indicating that all the constraints are satisfied.

Concepts • “Export Design Variable Values for Specific Iteration” on page 3-98

3-97

3 Response Optimization

Export Design Variable Values for Specific Iteration
This example shows how to export the design variable values for a specific
optimization iteration.

During optimization, the optimization solver simulates the model using a
different set of design variables at each iteration. After the optimization
completes, you can export the values for an iteration from the iteration plot of
the design variable set.

For this example, load a preconfigured Design Optimization tool session.
Optimize the model, and export the design variable set values for the third
iteration.

Open the Simulink model and load the preconfigured Design Optimization
tool session.

load('distillation_demo_sdosession_export_iter_dv.mat')
sdotool(SDOSessionData)

The Design Optimization tool opens and loads the preconfigured session.
Iteration Plot 1 is configured to plot the values of DesignVars for each
optimization iteration.

Click Optimize.

The optimization completes after four iterations.

Select the iteration plot of the design variable set.

Click Iteration plot 1.

Open the Export Iteration Data dialog box.

Right-click on the iteration plot, and select Export.

3-98

Export Design Variable Values for Specific Iteration

Specify details regarding exporting the design variable set data:

• In the Data to export list, select DesignVars.

• In the Iteration(s) to export box, enter 3.

To specify multiple iterations, use a vector of integers. For example, [0
2 5].

• In the Export to a variable named box, enter DesignVars_iter.

Export the design variable values set to the Design Optimization Workspace.

Click OK. The exported data variable, DesignVars_iter_3, appears in the
Design Optimization Workspace.

Note You will see the iteration number suffixed to the exported data variable
name.

Related
Examples

• “Update Model with Design Variables Set” on page 3-71
• “Compare Requirements and Design Variables Using Spider Plot” on page
3-94

Concepts • “Iteration Plots” on page 3-91

3-99

3 Response Optimization

Design Optimization to Meet Time- and Frequency-Domain
Requirements (GUI)

This example shows how to tune a controller to satisfy time- and
frequency-domain design requirements using the Design Optimization tool.

The example requires Simulink® Control Design™.

Aircraft Longitudinal Flight Control Model

Open the Simulink model.

sys = 'sdoAircraft';
open_system(sys);

The aircraft model is based on the Simulink slexAircraftExample model.
The model includes:

• Subsystems to model aircraft dynamics (Aircraft Dynamics Model), wind
gusts (Dryden Wind Gust Models), and pilot G-forces (Pilot G-force
calculation).

• A step change applied to the aircraft joystick at 1 second into the simulation
that causes the aircraft to pitch upward.

Controller Design Problem

You tune the controller gains to meet the following time- and
frequency-domain design requirements:

• Angle-of-attack alpha response to a step change in the joystick has a rise
time of less than 1 second, less than 1% overshoot, and settles to within 1%
of steady state within less than 5 seconds

• Pitch-rate control loop has good tracking below 1 rad/s and 20db noise
rejection above 100 rad/s

3-100

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

• Closed loop response from joystick to pilot G-Force is below 0db above 5
rad/s.

These requirements reduce the high frequency G-forces experienced by
the pilot in response to joystick changes while still maintaining flight
performance.

The model includes the following blocks (from Simulink® Design
Optimization™ and Simulink Control Design Model Verification libraries):

• Alpha Response specifies the alpha step response requirement.

• Pitch Rate Loop specifies the pitch-rate performance requirement.

The linearization inputs/outputs are already selected in the Linearizations
tab. The pitch-rate loop starts from the input of the controller (the
controller error signal) and ends at the output of the pitch-rate sensor. The
angle-of-attack loop is opened signal so that the block only computes the
pitch-rate loop response. The linear system is computed at a simulation time
of 0.

The Bounds tab specifies the following pitch-rate loop shape requirements:

• Greater than 20db over the range 0.01 rad/s to 0.1 rad/s

• Greater than 0db over the range 0.1 rad/s to 1 rad/s

• Less than -20db over the range 100 rad/s to 1000 rad/s

• Pilot G Response specifies the G-force requirement.

3-101

3 Response Optimization

The linearization inputs/outputs are already selected in the Linearizations
tab. The linear system is computed at a simulation time of 0.

The Bounds tab specifies the G-force requirements of less than 0db over
the range 5 rad/s 100 rad/s.

Open the Design Optimization Tool

Open the Design Optimization tool to configure and run design optimization
problems interactively. Click Response Optimization on the Block
Parameters dialog of Alpha Response, Pitch Rate Loop or Pilot G
Response block. Alternatively, type sdotool('sdoAircraft'). To show
multiple requirement plots at the same time, use the plot layout widgets
at the top-right of the tool.

The tool detects the requirements specified in the Model Verification blocks
and automatically includes them as requirements to satisfy.

Specify Design Variables

Specify the following model parameters as design variables for optimization:

• Controller gains Ki and Kf

• Pitch-rate sensor gain Kq

• Alpha sensor gain Ka

In the Design Variables Set drop-down list, select New. A dialog to select
model parameters for optimization opens.

3-102

Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)

Select Ki, Kf, Kq and Ka. Click << to add the selected parameters to the
design variables set.

Specify minimum and maximum gain values, the Ki and Kf values must
remain negative while Ka and Kq must remain positive.

Press Enter after you enter the values.

ClickOK. A new variable DesignVars appears in the SDOTOOLWorkspace.

Evaluate the Initial Design

Click Plot Current Response to simulate the model and check how well the
initial design satisfies the design requirements.

The plots indicate that the current design does not satisfy the pilot G-force
requirement and the alpha step response overshoot requirement is violated.

Optimize the Design

Create a plot to display how the controller variables are modified during the
optimization. In the Add plot drop-down list, select DesignVars, which
contains the optimization design variables Ki, Kf, Kq and Ka.

Click Optimize.

3-103

3 Response Optimization

To load a pre-configured file and run the optimization, click Open in the
Design Optimization tab and select sdoAircraft_sdosession.mat.
Alternatively load the project by typing:

>> load sdoAircraft_sdosession

>> sdotool(SDOSessionData)

The optimization progress window updates at each iteration and shows that
the optimization converged after 5 iterations.

The Alpha Response and Pilot G Response plots indicate that the design
requirements are satisfied. The DesignVars plot shows that the controller
gains converged to new values.

To view the optimized design variable values, click DesignVars in the
SDOTOOL Workspace. The optimized values of the design variables are
automatically updated in the Simulink model.

% Close the model
bdclose('sdoAircraft')

3-104

Design Optimization to Meet a Custom Objective (GUI)

Design Optimization to Meet a Custom Objective (GUI)
This example shows how to optimize a design to meet a custom objective
using the Design Optimization tool. You optimize the cylinder parameters to
minimize the cylinder geometry and satisfy design requirements.

Hydraulic Cylinder Model

The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl.
The model includes:

• Pump and Cylinder Assembly subsystems. For more information on the
subsystems, see "Single Hydraulic Cylinder Simulation".

• A step change applied to the cylinder control valve orifice area that causes
the cylinder piston position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet
the following design requirements:

• Ensure that the piston position has a step response rise time of less than
0.04 seconds and setting time of less than 0.05 seconds.

• Limit the maximum cylinder pressures to 1.75e6 N/m.

• Minimize the cylinder cross-sectional area.

Open the Design Optimization Tool

Open the Design Optimization tool to configure and run design optimization
problems interactively.

sdotool('sdoHydraulicCylinder')

3-105

3 Response Optimization

Specify Design Variables

Specify the following model parameters as design variables for optimization:

• Cylinder cross-sectional area Ac

• Piston spring constant K

In the Design Variables Set drop-down list, select New. A dialog to select
model parameters for optimization opens.

Select Ac and K. Click <- to add the selected parameters to the design
variables set.

Limit the cylinder cross-sectional area to circular area with radius between 1
and 2 centimeters and the piston spring constant to a range of 1e4 to 10e4
N/m. To do so, specify the maximum and minimum for the corresponding
variable in the Maximum and Minimum columns.

Because the variable values are different orders of magnitude, scale Ac by
1e-3 and K by 1e5.

Press Enter after you specify the values.

ClickOK. A new variable DesignVars appears in the SDOTOOLWorkspace.

Specify Design Requirements

The design requirements require logged model signals. During optimization,
the model is simulated using the current value of the design variables and the
logged signal is used to evaluate the design requirements.

Log the cylinder pressures, which is the first output port of the Cylinder
Assembly block.

3-106

Design Optimization to Meet a Custom Objective (GUI)

In the New drop-down list, select Signal. A dialog to select model signals
to log opens.

Enter Pressures as the signal name in the Signal set field. Then, in the
Simulink model, click the first output port of the Cylinder Assembly block
named Pressure. The dialog updates to display the selected signal.

Select the signal in the dialog and click -> to add it to the signal set.

Click OK. A new variable Pressures appears in the SDOTOOL Workspace.

Similarly, log the piston position, which is the second output of the Cylinder
Assembly block, in a variable named PistonPosition.

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

In the New drop-down list, select Signal Bound. A dialog to create a signal
bound requirement opens.

In the Amplitude columns, enter the maximum pressure requirement of
1.75e6 N/m and Requirement Name as MaxPressure. In the Select Model
Signals area, select Pressures, the signal on which this requirement applies.

3-107

3 Response Optimization

Click OK.

• A new MaxPressure variable appears in the SDOTOOL Workspace.

• A graphical view of the maximum pressure requirement is automatically
created.

Specify the piston position step response requirement of rise time of less than
0.04 seconds and a settling time of less than 0.05 seconds.

In the New drop-down list of the Response Optimization tab, select Step
Response Envelope. A dialog to create a step response requirement opens.

Specify a requirement name PistonResponse, the required rise and settling
time bounds. Select PistonPosition as the signal to apply the step response
requirement to.

Click OK.

Specify Custom Objective

The custom objective is to minimize the cylinder cross-sectional area.

In the New drop-down list, select Custom Requirement. A dialog to create
custom requirement opens.

Specify a function to call during optimization in the Requirement
function field. At each optimization iteration, the software calls the

3-108

Design Optimization to Meet a Custom Objective (GUI)

function and passes the current design variable values. You can also
optionally pass logged signals to the custom requirement. Here, you use
sdoHydraulicCylinder_customObjective as the custom requirement
function, which returns the value of the cylinder cross-sectional area.

In the Requirement type drop-down list, specify whether the requirement is
an objective to minimize (min), an inequality constraint (<=), or an equality
constraint (==).

type sdoHydraulicCylinder_customObjective

function objective = sdoHydraulicCylinder_customObjective(data)
%SDOHYDRAULICCYLINDER_CUSTOMOBJECTIVE
%
% The sdoHydraulicCylinder_customObjective function is used to define a
% custom requirement that can be used in the graphical SDTOOL environment.
%
% The |data| input argument is a structure with fields containing the
% design variable values chosen by the optimizer.
%
% The |objective| return argument is the objective value to be minimized by
% the SDOTOOL optimization solver.
%

% Copyright 2011 The MathWorks, Inc.

%For the cylinder design problem we want to minimize the cylinder
%cross-sectional area so return the cylinder cross-sectional area as an
%objective value.
Ac = data.DesignVars(1);
objective = Ac.Value;
end

Evaluate the Initial Design

3-109

3 Response Optimization

Click Plot Current Response to simulate the model and check how well the
initial design satisfies the design requirements. To show both requirement
plots at the same time, use the plot layout widgets at the top-right of the tool.

From the plots, see that the maximum pressure requirement is satisfied but
the piston position step response requirement is not satisfied.

Optimize the Design

Create a plot to display how the cylinder cross-sectional area and piston
spring constant are modified during optimization.

In the Add plot drop-down list, select DesignVars, which contains the
optimization design variables Ac and K.

Click Optimize.

The optimization progress window updates at each iteration and shows that
the optimization converged after 5 iterations.

The Pressures and PistonPosition plots indicate that the design
requirements are satisfied. The DesignVars plot shows that the cylinder
cross-sectional area Ac is minimized.

To view the optimized design variable values, click the variable name in the
SDOTOOL Workspace. The optimized values of the design variables are
automatically updated in the Simulink model.

3-110

Design Optimization to Meet a Custom Objective (GUI)

Related Examples

To learn how to optimize the cylinder design using the sdo.optimize
command, see "Design Optimization to Meet Custom Objective (Code)".

% Close the model
delete(sdotool('sdoHydraulicCylinder'))
bdclose('sdoHydraulicCylinder')

3-111

3 Response Optimization

Design Optimization to Meet a Custom Objective (Code)
This example shows how to optimize a design to meet custom objective
using sdo.optimize. You optimize the cylinder parameters to minimize the
cylinder geometry and satisfy design requirements.

Hydraulic Cylinder Model

Open the Simulink model.

sys = 'sdoHydraulicCylinder';
open_system(sys);

The hydraulic cylinder model is based on the Simulink model sldemo_hydcyl.
The model includes:

• Pump and Cylinder Assembly subsystems. For more information on the
subsystems, see "Single Hydraulic Cylinder Simulation".

• A step change applied to the cylinder control valve orifice area that causes
the cylinder piston position to change.

Hydraulic Cylinder Design Problem

You tune the cylinder cross-sectional area and piston spring constant to meet
the following design requirements:

• Ensure that the piston position has a step response rise time of less than
0.04 seconds and setting time of less than 0.05 seconds.

• Limit the maximum cylinder pressures to 1.75e6 N/m.

• Minimize the cylinder cross-sectional area.

Specify Design Variables

Select the following model parameters as design variables for optimization:

3-112

Design Optimization to Meet a Custom Objective (Code)

• Cylinder cross-sectional area Ac

• Piston spring constant K

Ac = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');
K = sdo.getParameterFromModel('sdoHydraulicCylinder','K');

Limit the cylinder cross-sectional area to a circular area with radius between
1 and 2 centimeters.

Ac.Minimum = pi*1e-2^2; % m^2
Ac.Maximum = pi*2e-2^2; % m^2

Limit the piston spring constant to a range of 1e4 to 10e4 N/m.

K.Minimum = 1e4; % N/m
K.Maximum = 10e4; % N/m

Specify Design Requirements

The design requirements require logged model signals. During optimization,
the model is simulated using the current value of the design variables and the
logged signal is used to evaluate the design requirements.

Log the following signals:

• Cylinder pressures, available at the first output port of the Cylinder
Assembly block

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;

• Piston position, available at the second output port of the Cylinder
Assembly block

PistonPosition = Simulink.SimulationData.SignalLoggingInfo;
PistonPosition.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
PistonPosition.OutputPortIndex = 2;

3-113

3 Response Optimization

Create an object to store the logging information and use later to simulate
the model

simulator = sdo.SimulationTest('sdoHydraulicCylinder');
simulator.LoggingInfo.Signals = [PistonPosition,Pressures];

Specify the piston position step response requirement of rise time of less than
0.04 seconds and settling time less than of 0.05 seconds.

PistonResponse = sdo.requirements.StepResponseEnvelope;
set(PistonResponse, ...

'RiseTime', 0.04, ...
'FinalValue', 0.04, ...
'SettlingTime', 0.05, ...
'PercentSettling', 1);

Specify the maximum cylinder pressure requirement of less than 1.75e6 N/m.

MaxPressure = sdo.requirements.SignalBound;
set(MaxPressure, ...

'BoundTimes', [0 0.1], ...
'BoundMagnitudes', [1.75e6 1.75e6], ...
'Type', '<=');

For convenience, collect the performance requirements into a single structure
to use later.

requirements = struct(...
'PistonResponse', PistonResponse, ...
'MaxPressure', MaxPressure);

Create Objective/Constraint Function

To optimize the cylinder cross-sectional area and piston spring constant,
create a function to evaluate the cylinder design. This function is called at
each optimization iteration.

Here, use an anonymous function with one argument that calls the
sdoHydraulicCylinder_design function.

evalDesign = @(p) sdoHydraulicCylinder_design(p,simulator,requirements);

3-114

Design Optimization to Meet a Custom Objective (Code)

The function:

• Has one input argument that specifies the cylinder cross-sectional area
and piston spring constant values.

• Returns the optimization objective value and optimization constraint
violation values.

The optimization solver minimizes the objective value and attempts
to keep the optimization constraint violation values negative. Type
help sdoExampleCostFunction for more details on how to write the
objective/constraint function.

The sdoHydraulicCylinder_design function uses the simulator
and requirements objects to evaluate the design. Type edit
sdoHydraulicCylinder_design to examine the function in more detail.

type sdoHydraulicCylinder_design

function design = sdoHydraulicCylinder_design(p,simulator,requirements)
%SDOHYDRAULICCYLINDER_DESIGN
%
% The sdoHydraulicCylinder_design function is used to evaluate a cylinder
% design.
%
% The |p| input argument is the vector of cylinder design parameters.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |sdoHydraulicCylinder| model and log simulation signals
%
% The |requirements| input argument contains the design requirements used
% to evaluate the cylinder design
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction

3-115

3 Response Optimization

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model
%
% Use the simulator input argument to simulate the model and log model
% signals.
%
% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.
%
simulator.Parameters = p;
% Simulate the model and log signals.
%
simulator = sim(simulator);
% Get the simulation signal log, the simulation log name is defined by the
% model |SignalLoggingName| property
%
logName = get_param('sdoHydraulicCylinder','SignalLoggingName');
simLog = get(simulator.LoggedData,logName);

%% Evaluate the design requirements
%
% Use the requirements input argument to evaluate the design requirements
%
% Check the PistonPosition signal against the stepresponse requirement
%
PistonPosition = get(simLog,'PistonPosition');
cPiston = evalRequirement(requirements.PistonResponse,PistonPosition.Values
% Check the Pressure signals against the maximum requirement
%
Pressures = find(simLog,'Pressures');
cPressure = evalRequirement(requirements.MaxPressure,Pressures.Values);
% Use the PistonResponse and MaxPressure requirements as non-linear
% constraints for optimization.
design.Cleq = [cPiston(:);cPressure(:)];
% Add design objective to minimize the Cylinder cross-sectional area
Ac = p(1); %Since we called sdo.optimize(evalDesign,[Ac;K])
design.F = Ac.Value;
end

3-116

Design Optimization to Meet a Custom Objective (Code)

Evaluate the Initial Design

Call the objective function with the initial cylinder cross-sectional area and
initial piston spring constant.

initDesign = evalDesign([Ac;K]);

The function simulates the model and evaluates the design requirements.
The scope shows that the maximum pressure requirement is satisfied but the
piston position step response requirement is not satisfied.

initDesign is a structure with the following fields:

• Cleq shows that some of the inequality constraints are positive indicating
they are not satisfied by the initial design.

initDesign.Cleq

ans =

-0.3839
-0.1861
-0.1836
-1.0000
0.3033
0.2909
0.1671
0.2326

-0.0480
-0.0480

• F shows the optimization objective value (in this case the cylinder
cross-sectional area). The initial design cross-sectional area, as expected,
has the same value as the initial cross-sectional area parameter Ac.

initDesign.F

3-117

3 Response Optimization

ans =

1.0000e-03

Optimize the Design

Pass the objective function, initial cross-sectional area and piston spring
constant values to sdo.optimize.

[pOpt,optInfo] = sdo.optimize(evalDesign,[Ac;K]);

Optimization started 18-Jan-2014 17:27:18

max Step-size First-order
Iter F-count f(x) constraint optimality

0 5 0.001 0.3033
1 11 0.00057281 0.07293 0.48 85.4
2 17 0.000391755 0 0.128 28
3 22 0.000388463 0 0.00232 0.00409
4 27 0.000382784 0 0.00401 0.00231
5 32 0.000378554 0 0.00299 0.000545

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance
and constraints are satisfied to within the selected value of the constrain

The optimization repeatedly evaluates the cylinder design by adjusting
the cross-sectional area and piston spring constant to meet the design
requirements. From the scope, see that the maximum pressure and piston
response requirements are met.

The sdo.optimize function returns:

• pOpt shows the optimized cross-sectional area and piston spring constant
values.

3-118

Design Optimization to Meet a Custom Objective (Code)

pOpt

pOpt(1,1) =

Name: 'Ac'
Value: 3.7855e-04

Minimum: 3.1416e-04
Maximum: 0.0013

Free: 1
Scale: 0.0020
Info: [1x1 struct]

pOpt(2,1) =

Name: 'K'
Value: 1.5816e+04

Minimum: 10000
Maximum: 100000

Free: 1
Scale: 65536
Info: [1x1 struct]

2x1 param.Continuous

• optInfo is a structure that contains optimization termination information
such as number of optimization iterations and the optimized design.

optInfo

optInfo =

Cleq: [10x1 double]
F: 3.7855e-04

Gradients: [1x1 struct]
exitflag: 1

3-119

3 Response Optimization

iterations: 5
SolverOutput: [1x1 struct]

Stats: [1x1 struct]

For example, the Cleq field shows the optimized non-linear inequality
constraints are all non-positive to with-in optimization tolerances, indicating
that the maximum pressure and piston response requirements are satisfied.

optInfo.Cleq

ans =

-0.0968
-0.0126
-0.0126
-1.0000
-0.2067
-0.0052
-0.0074
-0.0004
-0.0476
-0.0476

The F field contains the optimized cross-sectional area. The optimized
cross-sectional area value is nearly 50% less that the initial value.

optInfo.F

ans =

3.7855e-04

Update the Model Variable Values

3-120

Design Optimization to Meet a Custom Objective (Code)

By default, the model variables Ac and K are not updated at the end of
optimization. Use the setValueInModel command to update the model
variable values.

sdo.setValueInModel('sdoHydraulicCylinder',pOpt)

Related Examples

To learn how to optimize the cylinder design using the Design Optimization
tool, see "Design Optimization to Meet Custom Objective (GUI)".

% Close the model
bdclose('sdoHydraulicCylinder')

3-121

3 Response Optimization

Design Optimization to Meet Custom Signal Requirements
(GUI)

This example shows how to optimize a design to meet a custom signal
requirement. You optimize the controller parameters to minimize the plant
actuation signal energy while satisfying step response requirements.

1 Load a saved Design Optimization tool session.

load sldo_model1_custom_signal_session
sdotool(SDOSessionData);

The following Simulink model opens.

The Design Optimization tool, configured with the following settings, also
opens:

• Step response characteristics, specified on the output of the Plant block,
that the model output must satisfy:

– Maximum overshoot of 5%

– Maximum rise time of 10 seconds

– Maximum settling time of 30 seconds

• Design variable set with the controller parameters Kp, Ki and Kd. These
parameters have a minimum value of 0.

• The variables for step requirements (PlantResponse), logged signal
(PlantOutput) and design variables (DesignVars) which appear in the
Design Optimization Workspace.

3-122

Design Optimization to Meet Custom Signal Requirements (GUI)

2 Specify a signal to log. You apply the custom requirement on this logged
signal.

a Select New > Signal.

A window opens where you select a signal to log.

b In the Simulink model window, click the output of the Controller block.

3-123

3 Response Optimization

The window updates to display the selected signal.

c Select the signal and click to add it to the signal set.

d In Signal set, enter PlantActuator.

Click OK. A new variable PlantActuator appears in the Design
Optimization Workspace.

3 Specify the custom requirement to apply to the signal.

The custom requirement calls the objective function
sldo_model1_minimize_energy which returns the energy in the
PlantActuator signal. The signal energy is minimized. This function
accepts:

• An input argument data which is a structure with fields for the design
variables in the Design Optimization Workspace. Signals are logged
for the nominal and uncertain parameter values if there are any.

• Returns the objective value to be minimized.

Tip To see the contents of this function, type edit
sldo_model1_minimize_energy .

a Select New > Custom Requirement.

A window opens where you specify the custom requirement.

b Specify MinimizeEnergy as the Requirement Name.

c Specify @sldo_model1_minimize_energy as the Requirement
function.

d Select min as the Requirement type.

3-124

Design Optimization to Meet Custom Signal Requirements (GUI)

4 In the Select Model Signals area, select the PlantActuator check box to
associate the custom requirement with that signal.

Click OK. A new variable appears in the Design Optimization
Workspace. The window also updates to graphically display the custom
signal requirement.

5 Click Optimize.

3-125

3 Response Optimization

After a few iterations, the optimization converges to meet both the custom
signal and step response requirements.

6 Close the model.

setOption(sdotool('sldo_model1'),'NoPromptClose',true)
bdclose('sldo_model1')

3-126

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Design Optimization to Meet Frequency-Domain
Requirements (GUI)

This example shows how to tune model parameters to meet frequency-domain
requirements using the Design Optimization tool.

The example requires Simulink® Control Design™

Suspension Model

Open the Simulink Model.

open_system('sdoSimpleSuspension')

Mass-spring-damper models represent simple suspension systems
and for this example we tune the system to meet typical suspension
requirements. The model implements the second order system representing a
mass-spring-damper using Simulink blocks and includes:

• a Mass gain block parameterized by the total suspended mass, m0+mload.
The total mass is the sum of a nominal mass m0 and a variable load mass
mLoad.

• a Damper gain block parameterized by the damping coefficient, b.

• a Spring gain block parameterized by the spring constant, k.

• two integrator blocks to compute the mass velocity and position.

• a Band-Limited Disturbance Force block applying a disturbance force to
the Mass. The disturbance force is assumed to be band-limited white noise.

Simulate the model to view the system response to the applied disturbance
force.

3-127

3 Response Optimization

Design Problem

The initial system has a bandwidth that is too high. This can be seen from
the spiky position signal. You tune the spring and damper values to meet
the following requirements:

• The -3dB system bandwidth must not exceed 10 rad/s.

• The damping ratio of the system must be less than 1/sqrt(2). This ensures
that no frequencies in pass band are amplified by the system.

• Minimize the expected failure rate of the system. The expected failure
rate is described by a Weibull distribution dependent on the mass, spring,
and damper values.

• These requirements must all be satisfied as the load mass ranges from
0 to 20.

Open the Design Optimization Tool

In the Simulink model Analysis menu, select Response Optimization.

Specify Design Variables

In the Design Variables Set list, select New. Add the b and k model
variables to the design variable set.

• Specify the Minimum and Maximum values for the b variable as 100 and
10000 respectively.

• Specify the Minimum and Maximum values for the k variable as 10000 and
100000 respectively.

Click OK. A new variable, DesignVars, appears in the Design Optimization
Workspace.

3-128

Design Optimization to Meet Frequency-Domain Requirements (GUI)

In the Uncertain Variables Set list, select New. Add the mLoad variable to
the uncertain variables set.

• Specify the Uncertain Values value for the mLoad variable as [10 15 20]

Click OK. A new variable, UncVars, appears in the Design Optimization
Workspace.

Specify Linear Analysis Input/Output Points

Specify the input/output points defining the linear system used to compute
the bandwidth and damping ratio.

To specify the input/output points:

• In the New list, select Linearization I/Os.

• In the Simulink model, click the signal at the output of the Band-Limited
Disturbance Force block. The Create linearization I/O set dialog box
is updated and the chosen signal appears in it.

• In the Create linearization I/O dialog box, select the signal and click
Add.

• In the Configuration list for the selected signal, choose Input
Perturbation to specify it as an input signal.

• Similarly, add the pos signal from the Simulink model. Specify this signal
as an output. In the Configuration list, select Output Measurement.

3-129

3 Response Optimization

• Click OK. A new variable, IOs, appears in the Design Optimization
Workspace.

Add Bandwidth and Damping-Ratio Requirements

Tune the spring and damper values to satisfy bandwidth and damping ratio
requirements.

To specify the bandwidth requirement:

• Open a dialog to specify bounds on the Bode magnitude. In the New list,
select Bode Magnitude.

• Specify the requirement name as Bandwidth.

• Specify the edge start frequency and magnitude as 10 rad/s and -3db,
respectively.

• Specify the edge end frequency and magnitude as 100 rad/s and -3db,
respectively.

• Specify the input/output set to which the requirement applies by clicking
Select Systems to Bound. Select the IOs check box .

• Click OK. A new requirement, Bandwidth, appears in the Design
Optimization Workspace and a graphical view of the bandwidth
requirement is automatically created.

To specify the damping ratio requirement:

• Open a dialog to specify bounds on the damping ratio. In the New list,
select Damping Ratio.

• Specify the damping ratio bound value as 0.7071.

• Specify the input/output set to which the requirement applies by clicking
Select Systems to Bound. Select the IOs check box .

3-130

Design Optimization to Meet Frequency-Domain Requirements (GUI)

• Click OK. A new requirement, DampingRatio, appears in the Design
Optimization Workspace and a graphical view of the damping ratio
requirement is automatically created.

Add a Reliability Requirement

Tune the spring and damper values to minimize the expected failure rate
over a lifetime of 100e3 miles. The failure rate is computed using a Weibull
distribution on the damping ratio of the system. As the damping ratio
increases the failure rate is expected to increase.

Specify the reliability requirement as a custom requirement:

• Open a dialog box to specify the custom requirements. In the New list,
select Custom Requirement.

• Specify the custom requirement name as MinFailureRate.

• In the Specify Function area, select Minimize the function output
from the Type list.

• Specify the function as @sdoSuspension_FailureRate.

• Click OK. A new requirement, MinFailureRate, appears in the Design
Optimization Workspace and a graphical view of the custom requirement
is automatically created.

The @sdoSuspension_FailureRate function returns expected failure rate for a
lifetime of 100e3 miles.

type sdoSuspension_FailureRate

function pFailure = sdoSuspension_FailureRate(data)

3-131

3 Response Optimization

%SDOSUSPENDION_FAILURERATE
%
% The sdoSuspension_FailureRate function is used to define a custom
% requirement that can be used in the graphical SDTOOL environment.
%
% The |data| input argument is a structure with fields containing the
% design variable values chosen by the optimizer.
%
% The |pFailure| return argument is the failure rate to be minimized by the
% SDOTOOL optimization solver. The failure rate is given by a Weibull
% distribution that is a function of the mass, spring and damper values.
% The design minimizes the failure rate for a 100e3 mile lifetime.
%

% Copyright 2012 The MathWorks, Inc.

%Get the spring and damper design values
allVarNames = {data.DesignVars.Name};
idx = strcmp(allVarNames,'k');
k = data.DesignVars(idx).Value;
idx = strcmp(allVarNames,'b');
b = data.DesignVars(idx).Value;

%Get the nominal mass from the model workspace
wksp = get_param('sdoSimpleSuspension','ModelWorkspace');
m = evalin(wksp,'m0');

%The expected failure rate is defined by the Weibull cumulative
%distribution function, 1-exp(-(x/l)^k), where k=3, l is a function of the
%mass, spring and damper values, and x the lifetime.
d = b/2/sqrt(m*k);
pFailure = 1-exp(-(100e3*d/250e3)^3);
end

Optimize the Design

Before running the optimization be sure to have completed the earlier steps.
Alternatively, you can load the sdoSimpleSuspension_sdosession from the
model workspace into the Design Optimization tool.

3-132

Design Optimization to Meet Frequency-Domain Requirements (GUI)

To save the initial design variable values and later compare them with the
optimized values configure the optimization.

• Click Options.

• Select the Save optimized variable values as new design variable
set option.

To study how the design variable values change during optimization:

• In the Data to Plot list, select DesignVars.

• In the Add Plot list, and select Iteration Plot.

• View the design variables in an appropriately scaled manner. Right-click
on the DesignVars plot and select Show scaled values.

To evaluate the requirements at the initial design point, click Evaluate
Requirements . The requirement plots are updated and a ReqValues
variable is added to the Design Optimization Workspace.

To optimize the design, click Optimize. The plots are updated during
optimization. At the end of optimization, the optimal design values are
written to the DesignVars1 variable. The requirement values for the
optimized design are written to the ReqValues1 variable.

Analyze the Design

To compare design variables before and after optimization:

• In the Data to Plot list, select DesignVars.

3-133

3 Response Optimization

• In the Add Plot list, select Spider Plot.

• To add the optimized design variables to the same plot, select DesignVars1
in the Design Optimization Workspace and drag it onto the Spider plot.
Alternatively, in the Data to Plot list, select DesignVars1. Then, in the
Add Plot list, select Spider plot 1 from the Add to Existing Plot section.

The plot shows that the optimizer reduced both the k and b values for the
optimal design.

To compare requirements before and after optimization:

• In the Data to Plot list, select ReqValues.

• In the Add Plot list, select Spider Plot.

• To add the optimized requirement values to the same plot, select
ReqValues1 in the Design Optimization Workspace and drag it onto
the Spider plot. Alternatively, in the Data to Plot list, select ReqValues1.
Then, in the Add Plot list, select Spider plot 2 from the Add to Existing
Plot section.

The plot shows that the optimal design has a lower failure rate (the
MinFailureRate axis) and better satisfies the bandwidth requirement. The
value plotted on the bandwidth axis is the difference between the bandwidth
bound and the bandwidth value. The optimization satisfies the bound
by keeping this value negative; a more negative value indicates better
satisfaction of the bound.

The improved reliability and bandwidth are achieved by pushing the damping
ratio closer to the damping ratio bound. The plot has two axes for the damping
ratio requirement, one for each system pole, and the plotted values are the
difference between the damping ratio bound and the damping ratio value. The
optimization satisfies the bound by keeping this value negative.

3-134

Design Optimization to Meet Frequency-Domain Requirements (GUI)

Finally the simulated mass position is smoother than the initial position
response (indication of a lower bandwidth as required) at the expense of
larger position deflection.

% Close the model
bdclose('sdoSimpleSuspension')

3-135

3 Response Optimization

Specify Custom Signal Objective with Uncertain Variable
(GUI)

This example shows how to specify a custom objective function for a model
signal. You calculate the objective function value using a variable that models
parameter uncertainty.

Competitive Population Dynamics Model

The Simulink model sdoPopulation models a simple two-organism ecology
using the competitive Lotka-Volterra equations:

• is the population size of the n-th organism.

• is the inherent per capita growth rate of each organism.

• is the competitive delay for each organism.

• is the carrying capacity of the organism environment.

• is the proximity of the two populations and how strongly they affect each
other.

The model uses normalized units.

Open the model.

open_system('sdoPopulation')

3-136

Specify Custom Signal Objective with Uncertain Variable (GUI)

The two-dimensional signal, P, models the population sizes for P1 (first
element) and P2 (second element). The model is initially configured with one
organism, P1, dominating the ecology. The Population scope shows the P1
population oscillating between high and low values, while P2 is constant at
0.1. The Population Phase Portrait block shows the population sizes of the
two organisms in relation to each other.

Population Stabilization Design Problem

Tune the , , and values to meet the following design requirements:

• Minimize the population range, that is, the maximum difference between
P1 and P2.

• Stabilize P1 and P2, that is, ensure that neither organism population dies
off or grows extremely large.

You must tune the parameters for different values of the carrying capacity, .
This ensures robustness to environment carrying-capacity uncertainty.

Open Design Optimization Tool

Double-click the Open Optimization Tool block in the model to open a
pre configured Design Optimization tool session. The session specifies the
following variables:

• DesignVars - Design variables set for the , and model parameters.

• K_unc - Uncertain parameter modeling the carrying capacity of the
organism environment (). K_unc specifies the nominal value and two
sample values.

• P1 and P2 - Logged signals representing the populations of the two
organisms.

Specify Custom Signal Objective Function

Specify a custom requirement to minimize the maximum difference between
the two population sizes. Apply this requirement to the P1 and P2 model
signals.

3-137

3 Response Optimization

1 Open the Create Requirement dialog box. In the New list, select Custom
Requirement.

2 Specify the following in the Create Requirement dialog box:

• Name - Enter PopulationRange.

• Type - Select Minimize the function output from the list.

• Function - Enter @sdoPopulation_PopRange. For more information about
this function, see Custom Signal Objective Function Details.

• Select Signals and Systems to Bound (Optional) - Select the P1 and
P2 check boxes.

3. Click OK.

A new variable, PopulationRange, appears in the Design Optimization
Workspace.

Custom Signal Objective Function Details

PopulationRange uses the sdoPopulation_PopRange function. This function
computes the maximum difference between the populations, across different
environment carrying capacity values. By minimizing this value, you can
achieve both design goals. The function is called by the optimizer at each
iteration step.

To view the function, type edit sdoPopulation_PopRange. The following
discusses details of this function.

Input/Output

The function accepts data, a structure with the following fields:

• DesignVars - Current iteration values of , and .

• Nominal - Logged signal data, obtained by simulating the model using
parameter values specified by data.DesignVars and nominal values

3-138

Specify Custom Signal Objective with Uncertain Variable (GUI)

for all other parameters. The Nominal field is itself a structure with
fields for each logged signal. The field names are the logged signal
names. The custom requirement uses the logged signals, P1 and P2.
Therefore, data.Nominal.P1 and data.Nominal.P2 are timeseries objects
corresponding to P1 and P2.

• Uncertain - Logged signal data, obtained by simulating the model using
the sample values of the uncertain variable K_unc. The Uncertain field is
a vector of N structures, where N is the number of sample values specified
for K_unc. Each element of this vector is similar to data.Nominal and
contains simulation results obtained from a corresponding sample value
specified for K_unc.

The function returns the maximum difference between the population sizes
across different carrying capacities. The following code snippet in the function
performs this action:

val = max(maxP(1)-minP(2),maxP(2)-minP(1));

Data Time Range

When computing the design goals, discard the initial population growth data
to eliminate biases from the initial-condition. The following code snippet
in the function performs this action:

%Get the population data
tMin = 5; %Ignore signal values prior to this time
iTime = data.Nominal.P1.Time > tMin;
sigData = [data.Nominal.P1.Data(iTime), data.Nominal.P2.Data(iTime)];

iTime represents the time interval of interest, and the columns of sigData
contain P1 and P2 data for this interval.

Optimization for Different Values of Carrying Capacity

The function includes the effects of varying the carrying capacity by iterating
through the elements of data.Uncertain. The following code snippet in the
function performs this action:

...
for ct=1:numel(data.Uncertain)

3-139

3 Response Optimization

iTime = data.Uncertain(ct).P1.Time > tMin;
sigData = [data.Uncertain(ct).P1.Data(iTime), data.Uncertain(ct).P2.Data

maxP = max([maxP; max(sigData)]); %Update maximum if new signals are bi
minP = min([minP; min(sigData)]); %Update minimum if new signals are sm

end
...

The maximum and minimal populations are obtained across all the
simulations contained in data.Uncertain.

Optimize Design

Click Optimize.

The optimization converges after a number of iterations.

The P1,P2 plot shows the population dynamics, with the first organism
population in blue and the second organism population in green. The dotted
lines indicate the population dynamics for different environment capacity
values. The PopulationRange plot shows that the maximum difference
between the two organism populations reduces over time.

The Population Phase Portrait block shows the populations initially
varying, but they eventually converge to stable population sizes.

% Close the model
bdclose('sdoPopulation')

3-140

Design Optimization with Uncertain Variables (Code)

Design Optimization with Uncertain Variables (Code)
This example shows how to optimize a design when there are uncertain
variables. You optimize the dimensions of a Continuously Stirred Tank
Reactor (CSTR) to minimize product concentration variation and production
cost in case of varying, or uncertain, feed stock.

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process
industry. The Simulink model, sdoCSTR, models a jacketed diabatic (i.e.,
non-adiabatic) tank reactor described in [1]. The CSTR is assumed to be
perfectly mixed, with a single first-order exothermic and irreversible reaction,
. , the reactant, is converted to , the product.

In this example, you use the following two-state CSTR model, which uses
basic accounting and energy conservation principles:

• , and - Concentrations of A in the CSTR and in the feed [kgmol/m^3]

• , , and - CSTR, feed, and coolant temperatures [K]

• and - Volumetric flow rate [m^3/h] and the density of the material in
the CSTR [1/m^3]

• and - Height [m] and heated cross-sectional area [m^2] of the CSTR.

• - Pre-exponential non-thermal factor for reaction [1/h]

• and - Activation energy and heat of reaction for [kcal/kgmol]

• - Boltzmann’s gas constant [kcal/(kgmol * K)]

3-141

3 Response Optimization

• and - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m^2 *
K * h)]

Open the Simulink model.

open_system('sdoCSTR');

The model includes a cascaded PID controller in the Controller subsystem.
The controller regulates the reactor temperature, , and reactor residual
concentration, .

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base
of the cylinder. Tune the CSTR cross-sectional area, , and CSTR height, ,
to meet the following design goals:

• Minimize the variation in residual concentration, . Variations in the
residual concentration negatively affect the quality of the CSTR product.
Minimizing the variations also improves CSTR profit.

• Minimize the mean coolant temperature . Heating or cooling the
jacket coolant temperature is expensive. Minimizing the mean coolant
temperature improves CSTR profit.

The design must allow for variations in the quality of supply feed
concentration, , and feed temperature, . The CSTR is fed with feed from
different suppliers. The quality of the feed differs from supplier to supplier
and also varies within each supply batch.

Specify Design Variables

Select the following model parameters as design variables for optimization:

• Cylinder cross-sectional area

• Cylinder height

3-142

Design Optimization with Uncertain Variables (Code)

p = sdo.getParameterFromModel('sdoCSTR',{'A','h'});

Limit the cross-sectional area to a range of [1 2] m^2.

p(1).Minimum = 1;
p(1).Maximum = 2;

Limit the height to a range of [1 3] m.

p(2).Minimum = 1;
p(2).Maximum = 3;

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables.
You evaluate the design using different values of feed temperature and
concentration.

pUnc = sdo.getParameterFromModel('sdoCSTR',{'FeedCon0','FeedTemp0'});

Create a parameter space for the uncertain variables. Use normal
distributions for both variables. Specify the mean as the current parameter
value. Specify a variance of 5% of the mean for the feed concentration and
1% of the mean for the temperature.

uSpace = sdo.ParameterSpace(pUnc);
uSpace = setDistribution(uSpace,'FeedCon0',makedist('normal',pUnc(1).Value,
uSpace = setDistribution(uSpace,'FeedTemp0',makedist('normal',pUnc(2).Value

The feed concentration is inversely correlated with the feed temperature. Add
this information to the parameter space.

%uSpace.RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with
the (i,j) entry specifying the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between
concentration and temperature.

rng('default'); %For reproducibility

3-143

3 Response Optimization

uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

Ideally you want to evaluate the design for every combination of points in the
design and uncertain spaces, which implies 30*60 = 1800 simulations. Each
simulation takes around 0.5 sec. You can use parallel computing to speed
up the evaluation. For this example you instead only use the samples that
have maximum & minimum concentration and temperature values, reducing
the evaluation time to around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl.FeedTemp0);
[~,imaxT] = max(uSmpl.FeedTemp0);
uSmpl = uSmpl(unique([iminC,imaxC,iminT,imaxT]) ,:);

Specify Design Requirements

The design requirements require logging model signals. During optimization,
the model is simulated using the current value of the design variables. Logged
signals are used to evaluate the design requirements.

Log the following signals:

• CSTR concentration, available at the second output port of the
sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLoggingInfo;
Conc.BlockPath = 'sdoCSTR/CSTR';
Conc.OutputPortIndex = 2;
Conc.LoggingInfo.NameMode = 1;
Conc.LoggingInfo.LoggingName = 'Concentration';

• Coolant temperature, available at the first output of the
sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignalLoggingInfo;
Coolant.BlockPath = 'sdoCSTR/Controller';

3-144

Design Optimization with Uncertain Variables (Code)

Coolant.OutputPortIndex = 1;
Coolant.LoggingInfo.NameMode = 1;
Coolant.LoggingInfo.LoggingName = 'Coolant';

Create and configure a simulation test object to log the required signals.

simulator = sdo.SimulationTest('sdoCSTR');
simulator.LoggingInfo.Signals = [Conc,Coolant];

Create Objective/Constraint Function

Create a function to evaluate the CSTR design. This function is called at
each optimization iteration.

Use an anonymous function with one argument that calls the sdoCSTR_design
function.

evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

• Has one input argument that specifies the CSTR dimensions

• Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the sample
values specified for the feed concentration. Within the loop, the function:

• Simulates the model using the current iterate, feed concentration, and feed
temperature values

• Calculates the residual concentration variation and coolant temperature
costs

To view the objective function, type edit sdoCSTR_design.

Evaluate Initial Design

Call the evalDesign function with the initial CSTR dimensions.

dInit = evalDesign(p)

3-145

3 Response Optimization

dInit =

F: 11.3358
costConc: 6.4387

costCoolant: 4.8971

Plot the model response for the initial design. Simulate the model using the
sample feed concentration values. The plot shows the variation in the residual
concentration and coolant temperature.

sdoCSTR_plotModelResponse(p,simulator,pUnc,uSmpl);

The sdoCSTR_plotModelResponse function plots the model response. To view
this function, type edit sdoCSTR_plotModelResponse.

Optimize Design

Pass the objective function and initial CSTR dimensions to sdo.optimize.

pOpt = sdo.optimize(evalDesign,p)

Optimization started 18-Jan-2014 17:27:48

max Step-size First-order
Iter F-count f(x) constraint optimality

0 4 5.17935 0
1 8 3.81245 0 2.01 7.81
2 12 2.65827 0 0.574 3.06
3 16 2.53697 0 0.162 0.423
4 20 2.52022 0 0.0154 0.249
5 24 2.48533 0 0.072 0.163
6 28 2.47909 0 0.0285 0.107
7 37 2.47708 0 0.0019 0.143
8 42 2.46892 0 0.0477 0.452

3-146

Design Optimization with Uncertain Variables (Code)

9 50 2.46495 0 0.00891 0.397
10 65 2.46444 0 0.00127 0.351
11 72 2.46444 0 0.000801 0.351

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

pOpt(1,1) =

Name: 'A'
Value: 2

Minimum: 1
Maximum: 2

Free: 1
Scale: 0.5000
Info: [1x1 struct]

pOpt(2,1) =

Name: 'h'
Value: 2.2093

Minimum: 1
Maximum: 3

Free: 1
Scale: 2
Info: [1x1 struct]

2x1 param.Continuous

Evaluate Optimized Design

Call the evalDesign function with the optimized CSTR dimensions.

dFinal = evalDesign(pOpt)

3-147

3 Response Optimization

dFinal =

F: 2.4644
costConc: 1.4454

costCoolant: 1.0191

Plot the model response for the optimized design. Simulate the model
using the sample feed concentration values. The optimized design reduces
the residual concentration variation and average coolant temperature for
different feed stocks.

sdoCSTR_plotModelResponse(pOpt,simulator,pUnc,uSmpl);

Related Examples

To learn how to use sensitivity analysis to explore the CSTR design space
and select an initial design for optimization, see "Design Optimization with
Uncertain Variables (Code)".

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st
ed. Upper Saddle River, NJ: Prentice Hall, 1998.

% Close the model
bdclose('sdoCSTR')

3-148

Generate MATLAB Code for Design Optimization Problems (GUI)

Generate MATLAB Code for Design Optimization Problems
(GUI)

This example shows how to automatically generate a MATLAB function to
solve a Design Optimization problem. You use the Design Optimization tool to
define an optimization problem for a hydraulic cylinder design and generate
MATLAB code to solve this optimization problem.

Hydraulic Cylinder Design Problem

The "Design Optimization to Meet Custom Objective Using the Design
Optimization Tool" example shows how to use the Design Optimization tool to
optimize a cylinder design. In this example we load a pre-configured Design
Optimization tool session based on that example.

load sdoHydraulicCylinder_sdosession
sdotool(SDOSessionData)

Generate MATLAB Code

From the Optimize list, select Generate MATLAB Code.

The generated code is added to the MATLAB editor as an unsaved MATLAB
function.

Examine the generated code. Significant code portions are:

3-149

3 Response Optimization

• Specify Design Variables - Definition of the model parameters being
optimized.

• Specify Design Requirements - Definition of the design requirements.

• Create Optimization Objective Function - Creation of an anonymous
function that calls the subfunction sdoHydraulicCylinder_optFcn, which
evaluates the cylinder design. sdo.optimize calls the anonymous function
at each iteration.

• Evaluate custom parameter requirement functions -
Evaluates the custom requirement, MinimizeAC, that uses the
sdoHydraulicCylinder_customObjective function.

• Optimize the Design - Optimization using the sdo.optimize command.

Select Save from the MATLAB editor to save the generated function.

Run Generated Code

Run the generated function.

The first output argument, pOpt, contains the optimized parameter values
and the second output argument, optInfo, contains optimization information.

Modify the Generated Code

You can:

• Modify the generated sdo_sdoHydraulicCylinder function to include or
exclude new design requirements or change the optimization options.

• Call the generated sdo_sdoHydraulicCylinder function with a different
set of parameters to optimize.

3-150

Generate MATLAB Code for Design Optimization Problems (GUI)

For details on how to write an objective/constraint function to use with
the sdo.optimize command, type help sdoExampleCostFunction at the
MATLAB command prompt.

Close the model

delete(sdotool('sdoHydraulicCylinder'))
bdclose('sdoHydraulicCylinder')

3-151

3 Response Optimization

Skip Model Simulation Based on Parameter Constraint
Violation (GUI)

This example shows how to optimize a design and specify parameter-only
constraints that prevent the model from being evaluated in an invalid solution
space.

During optimization, the solver may try a design variable set that results in a
model simulation error, which can be computationally expensive. If you can
define a parameter-only constraint that identifies such a design variable
set, then the solver can use the constraint to skip such sets. In other words,
you can configure the optimization to be more efficient by disallowing design
variable sets that lead to simulation errors.

In this example, you optimize thermostat settings to minimize temperature
set-point deviations while satisfying some constraints. One of the constraints
applies to the model parameters that define the thermostat switch on/switch
off points. If the switch-off point is greater than the switch-on point,
evaluating the model leads to a simulation error.

Thermostat Model

Open the model.

open_system('sdoThermostat');

The model describes a simple heater & thermostat that regulate the
temperature of a room. The room is subject to external temperature
fluctuations. The room temperature is computed using a first-order heat-flow
equation:

Where:

• is the room temperature (C).

• the external temperature (C).

3-152

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

• the heat supplied by the heater (W).

• the room thermal capacity (J/C).

The heater is controlled by a thermostat that turns on when the difference
between the room temperature and temperature set-point exceeds a threshold.
The heater turns off when the error drops below a threshold.

The heater operation is displayed in the Heater use scope. The upper axis
is the delivered heat and the lower axis shows the times when the heater is
switched on.

The room temperature is displayed in the Temperature scope.

Thermostat Design Problem

You tune the thermostat turn-on and turn-off temperature thresholds, and
also the heater power. The Thermostat switch block specifies the turn-on
and turn-off thresholds using the variables H_on and H_off. The Heater block
specifies the heater power using the variable Hgain.

The design requirements are:

• Minimize the difference between the room temperature and temperature
set-point over a 24 hour period.

• The heater must not turn on more than 12 times during the 24 hour period.

• The thermostat turn-on temperature must be greater than the thermostat
turn-off temperature. If this constraint is violated, the model is invalid and
cannot be simulated or evaluated.

Open the Design Optimization Tool

3-153

3 Response Optimization

Open a pre-configured Design Optimization tool session.

load sdoThermostat_sdosession
sdotool(SDOSessionData)

The pre-configured session specifies the following variables:

• DesignVars - Design variables set for the H_on, H_off, and Hgain model
parameters.

• Minimize_T_error - Requirement to minimize the temperature deviation
from the set-point.

• LimitH_on - Requirement to limit the number of times the thermostat
is turned on.

• H_on_sig and T_error - Logged signals. H_on_sig represents when the
heater is on. T_error is the difference between the room temperature and
the set-point.

Specify Parameter Constraint

The H_on > H_off requirement is not yet defined. Use a custom requirement
to specify this constraint and configure the requirement to error if it is not
satisfied.

In the New drop-down list, select Custom Requirement. The Create
Requirement dialog opens.

In this dialog, specify the following:

• Name - SwitchConstraint.

• Type - Select Constrain the function output to be >= 0 from the
Type list.

3-154

Skip Model Simulation Based on Parameter Constraint Violation (GUI)

• Function - @sdoThermostat_SwitchingConstraint.

• Error if constraint is violated - Select this check box.

The software calls the sdoThermostat_SwitchingConstraint function
at each optimization iteration with a structure containing all the design
variables. The output of the sdoThermostat_SwitchingConstraint function
is the difference between the H_on and H_off values. This difference must be
positive for the requirement to be satisfied.

The software evaluates custom requirements that test parameter-only
constraints, such as SwitchConstraint, before simulating the model and
evaluating the remaining requirements.

• If the constraint is violated while the Error if constraint is violated
check box is selected, the software does not simulate the model to evaluate
the remaining requirements. Instead, the solver assigns the cost function
a NaN value for this iteration, evaluates the terminating conditions, and
continues.

• If the constraint is violated while the Error if constraint is violated
check box is cleared, the solver will attempt to simulate the model to
evaluate the remaining requirements. Simulating the model may lead
to a hard error; for example, simulating the thermostat model when
SwitchConstraint is violated will lead to an error. In this case, the solver
assigns the cost function a NaN value for this iteration, evaluates the
terminating conditions, and continues.

To examine the constraint function, type edit
sdoThermostat_SwitchingConstraint. The requirement that H_on > H_off
is implemented as H_on - H_off > 0

Optimize the Design

Click Optimize.

3-155

3 Response Optimization

The Optimization Progress window appears and updates at each iteration.
The optimization successfully minimizes the temperature error while
satisfying the switching constraints.

During this optimization, the H_on and H_off values never approach the
H_on > H_off constraint boundary. So, there is never a danger of violating
the constraint. However, changing the optimization algorithm may produce
different behavior. For example, changing the optimization algorithm from
the default, ’Sequential Quadratic Programming’, to ’Active-Set’ results in
H_on and H_off values that are at the constraint boundary. This violation
triggers the SwitchConstraint requirement and prevents model simulation
for the relevant iterations.

View Optimized Model Response

Simulate the model with the optimized thermostat settings. The optimized
heater operation is displayed in the Heater use scope where the upper axis is
the delivered heat and the lower axis the heater switch on times.

The optimized room temperature is displayed in the Temperature scope.

Close the model

delete(sdotool('sdoThermostat'))
bdclose('sdoThermostat')

3-156

Optimizing Parameters for Robustness

Optimizing Parameters for Robustness

In this section...

“What Is Robustness?” on page 3-157

“Sampling Methods for Uncertain Parameters” on page 3-158

“Optimize Parameters for Robustness (GUI)” on page 3-162

What Is Robustness?
A design is robust when it’s response does not violate design requirements
under model parameter variations. Your model may contain parameters
whose values are not precisely known. Such parameters vary over a given
range of values and are defined as uncertain parameters. You may know the
nominal value and the range of values in which these uncertain parameters
vary.

You can use Simulink Design Optimization software to incorporate the
parameter uncertainty to test the robustness of your design. When you
optimize parameters for robustness, the optimization solver uses the
responses computed using all the uncertain parameter values to adjust the
design variable values.

You can specify the same parameter both as a design and uncertain variable.
However, you cannot use a parameter both as a design and uncertain variable
in the same optimization run. Also, you cannot add uncertainty to controller
or plant parameters during optimization-based control design in the SISO
Design Tool.

The uncertain variables can be scalar, vector, matrix or an expression.

You can test and optimize parameters for model robustness in the following
ways:

• Before Optimization. Specify the parameter uncertainty before you
optimize the parameters to meet the design requirements. In this case,
the optimization method optimizes the signals based on both nominal
parameter values as well as the uncertain values. This mode requires
more computational time.

3-157

3 Response Optimization

• After Optimization. Specify the parameter uncertainty after you have
optimized the model parameters to meet design requirements. You can
then test the effect of the uncertain parameters by plotting the model’s
response. If the response violates the design requirements, you can
optimize the parameters again by including the parameter uncertainty
during the optimization.

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-162

More About

“Sampling Methods for Uncertain Parameters” on page 3-158

Sampling Methods for Uncertain Parameters
Sample values for uncertain parameters are a vector of numerical values. You
can specify the vector yourself or generate a vector of random numbers using
the software. The sample values you specify can be uniformly distributed or
random. For example, four sample values for two uncertain parameters a and
b in the range [0 3] and [1 2.5] may look like the following figure.

	

� �

�

�
�

3-158

Optimizing Parameters for Robustness

There are two methods to determine the number of sample values to use
during optimization:

• Only the combination of minimum and maximum values (circled)

	

� �

�

�
�

• Combination of the entire set of values (all solid dots in the previous figure)

Tip Using only the minimum and maximum values during optimization
increases the computation speed when compared to using the entire set of
values.

For the previous example, there are 4 combinations using the minimum and
maximum values and 16 combinations if you use all sample values.

In the Design Optimization tool, you specify the sampling method using the
options as shown in the following figure.

3-159

3 Response Optimization

3-160

Optimizing Parameters for Robustness

Related Examples

“Optimize Parameters for Robustness (GUI)” on page 3-162

More About

• “What Is Robustness?” on page 3-157

3-161

3 Response Optimization

Optimize Parameters for Robustness (GUI)
This example shows how to optimize parameters for model robustness.

1 Load a saved Design Optimization tool session.

load sldo_model1_desreq_optim_sdosession;
sdotool(SDOSessionData);

The sdotool command opens the following Simulink model and a saved
Design Optimization tool session.

The parameters of this model, Kp, Ki and Kd, have already been optimized
to meet the following step response requirements:

• Maximum overshoot of 5%

• Maximum rise time of 10 seconds

• Maximum settling time of 30 seconds

3-162

Optimizing Parameters for Robustness

2 Specify parameter uncertainty.

a In the Uncertain Variables Set drop-down list, select New.

A window opens where you specify uncertain variables.

b Click w0 and zeta to select them.

c Click to add the selected parameters to an uncertain variables
set.

3-163

3 Response Optimization

The software displays the following parameter settings:

• Variable — Parameter name

• Nominal Value— Nominal value of the parameters as specified in
the Simulink model

• Uncertain Values— Values that the uncertain parameter can take.
By default, the maximum and minimum values vary by 10% of the
nominal value.

The total number of sample values to use during optimization is a
combination of the maximum and minimum values of the uncertain
parameters.

The check-box indicates that the parameter is included in the uncertain
variable set. The default uncertain variable set name is UncVars.

Click OK. A new variable UncVars appears in Design Optimization
Workspace of the Design Optimization tool.

3-164

Optimizing Parameters for Robustness

Specify Random Values

Instead of specifying sample values, you can auto-generate random
values in a specific range. Select a parameter and click Set Uncertain
Values.

A window opens where you specify the range and the number of samples.

3 Test the model robustness to the uncertain parameters.

a Click Plot Current Response.

The step response plot, displaying the requirements, updates.

3-165

3 Response Optimization

• The solid curve corresponds to the model response computed using the
optimized parameters and nominal values of the uncertain parameter.

• The four dashed curves correspond to the model response with the
minimum and maximum values of the uncertain parameters.

The dashed plot lines show that the response during the period of 10
to 20 seconds violates the design requirements.

4 Optimize the parameters for model robustness. Click Optimize.

3-166

Optimizing Parameters for Robustness

The Optimization Progress window opens which displays the optimization
iterations.

After the optimization completes, the message Optimization converged
indicates that the final model response computed by varying the uncertain
parameters meets the specified design requirements.

3-167

3 Response Optimization

5 Examine the responses.

Tip To view only the final responses of the model, right-click the white
area in the plot and uncheck Responses > Show Iteration Responses.

The final responses appear as the thick solid and dashed curves. The
nominal and uncertain responses with parameter variations now meet the
design requirements.

More About

• “What Is Robustness?” on page 3-157

• “Sampling Methods for Uncertain Parameters” on page 3-158

3-168

Optimizing Parameters for Robustness

Related
Examples

• “Design Optimization with Uncertain Variables (Code)” on page 3-141

3-169

3 Response Optimization

Accelerating Model Simulations During Optimization

In this section...

“About Accelerating Optimization” on page 3-170

“Limitations” on page 3-170

“Setting Accelerator Mode for Response Optimization” on page 3-170

About Accelerating Optimization
You can accelerate the response optimization computations by changing the
simulation mode of your Simulink model. Simulink Design Optimization
software supports Normal and Accelerator simulation modes. For more
information about these modes, see “How Acceleration Modes Work” in the
Simulink documentation.

The default simulation mode is Normal. In this mode, Simulink uses
interpreted code, rather than compiled C code during simulations.

In the Accelerator mode, Simulink Design Optimization software runs
simulations during optimization with compiled C code. Using compiled C
code speeds up the simulations and reduces the time to optimize the model
response signals.

Limitations
You cannot use the Accelerator mode if your model contains algebraic loops.
If the model contains MATLAB function blocks, you must either remove them
or replace them with Fcn blocks.

If the model structure changes during optimization, the model is compiled
to regenerate the C code for each iteration. Using the Accelerator mode
increases the computation time. To learn more about code regeneration, see
“Code Regeneration in Accelerated Models” in the Simulink documentation.

Setting Accelerator Mode for Response Optimization
To set the simulation mode to Accelerator, open the Simulink model window
and perform one of the following actions:

3-170

Accelerating Model Simulations During Optimization

• Select under Simulation > Mode > Accelerator.

• Choose Accelerator from the drop-down list as shown in the next figure.

Tip To obtain the maximum performance from the Accelerator mode,
close all Scope blocks in your model.

3-171

3 Response Optimization

Speedup Using Parallel Computing

In this section...

“When to Use Parallel Computing for Response Optimization” on page 3-172

“How Parallel Computing Speeds Up Optimization” on page 3-173

When to Use Parallel Computing for Response
Optimization
You can use Simulink Design Optimization software with Parallel Computing
Toolbox software to speed up the response optimization of a Simulink
model. Using parallel computing may reduce model optimization time in the
following cases:

• The model contains a large number of tuned parameters, and the Gradient
descent method is selected for optimization.

• The Pattern search method is selected for optimization.

• The model contains a large number of uncertain parameters and uncertain
parameter values.

• The model is complex and takes a long time to simulate.

When you use parallel computing, the software distributes independent
simulations to run them in parallel on multiple MATLAB sessions, also
known as workers. Distributing the simulations significantly reduces the
optimization time because the time required to simulate the model dominates
the total optimization time.

For information on how the software distributes the simulations and the
expected speedup, see “How Parallel Computing Speeds Up Optimization” on
page 3-173.

For information on configuring your system and using parallel computing, see
“How to Use Parallel Computing” on page 3-177.

3-172

Speedup Using Parallel Computing

How Parallel Computing Speeds Up Optimization
You can enable parallel computing with the Gradient descent and Pattern
search optimization methods. When you enable parallel computing, the
software distributes independent simulations during optimization on multiple
MATLAB sessions. The following topics describe which simulations are
distributed and the potential speedup using parallel computing:

• “Parallel Computing with the Gradient Descent Method” on page 3-173

• “Parallel Computing with the Pattern Search Method” on page 3-174

Parallel Computing with the Gradient Descent Method
When you select Gradient descent as the optimization method, the model
is simulated during the following computations:

• Constraint and objective value computation — One simulation per iteration

• Constraint and objective gradient computations — Two simulations for
every tuned parameter per iteration

• Line search computations — Multiple simulations per iteration

The total time, Ttotal , taken per iteration to perform these simulations is
given by the following equation:

T T N T N T T N Ntotal p ls p ls         () () (())2 1 2

where T is the time taken to simulate the model and is assumed to be equal

for all simulations, Np is the number of tuned parameters, and Nls is the

number of line searches. Nls is difficult to estimate and you generally assume
it to be equal to one, two, or three.

When you use parallel computing, the software distributes the simulations
required for constraint and objective gradient computations. The simulation
time taken per iteration when the gradient computations are performed in

parallel, TtotalP , is approximately given by the following equation:

T T ceil
N
N

T N T T ceil
N
N

totalP
p

w
ls

p

w
= + ⎛

⎝⎜
⎞
⎠⎟

× × + × = × + × ⎛
⎝⎜

⎞() () (2 1 2
⎠⎠⎟

+ Nls)

3-173

3 Response Optimization

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with
configuring the system for parallel computing and loading Simulink software
on the remote MATLAB workers.

The expected speedup for the total optimization time is given by the following
equation:

T
T

ceil
N
N

N

N N
totalP

total

p

w
ls

p ls
=

+ × ⎛
⎝⎜

⎞
⎠⎟

+

+ × +

1 2

1 2()

For example, for a model with Np=3, Nw=4, and Nls=3, the expected speedup

equals
1 2

3
4

3

1 2 3 3
0 6

+ × ⎛
⎝⎜

⎞
⎠⎟

+

+ × +
=

ceil

()
. .

For an example of the performance improvement achieved with the Gradient
descent method, see Improving Optimization Performance Using Parallel
Computing.

Parallel Computing with the Pattern Search Method
The Pattern search optimization method uses search and poll sets to create
and compute a set of candidate solutions at each optimization iteration.

The total time, Ttotal , taken per iteration to perform these simulations, is
given by the following equation:

T T N N T N N T N N Ntotal p ss p ps p ss ps= × × + × × = × × +((()))

where T is the time taken to simulate the model and is assumed to be equal

for all simulations, Np is the number of tuned parameters, Nss is a factor

for the search set size, and Nps is a factor for the poll set size. Nss and

Nps are typically proportional to Np .

3-174

Speedup Using Parallel Computing

When you use parallel computing, Simulink Design Optimization software
distributes the simulations required for the search and poll set computations,
which are evaluated in separate parfor loops. The simulation time taken per

iteration when the search and poll sets are computed in parallel, TtotalP ,
is given by the following equation:

T T ceil N
N
N

T ceil N
N
N

T ceil N
N

totalP p
ss

w
p

ps

w

p

= × × + × ×

= × ×

(()) (())

((
sss

w
p

ps

wN
ceil N

N
N

) ())+ ×

where Nw is the number of MATLAB workers.

Note The equation does not include the time overheads associated with
configuring the system for parallel computing and loading Simulink software
on the remote MATLAB workers.

The expected speed up for the total optimization time is given by the following
equation:

T
T

ceil N
N
N

ceil N
N
N

N N N
totalP

total

p
ss

w
p

ps

w
p ss ps

=
× + ×

+×

() ()

()

For example, for a model with Np=3, Nw=4, Nss=15, and Nps=2, the expected

speedup equals
ceil ceil() ()

()
.

3
15
4

3
2
4

3 15 2
0 27

× + ×

× +
= .

Note Using the Pattern search method with parallel computing may not
speed up the optimization time. To learn more, see “Why do I not see the
optimization speedup I expected using parallel computing?” on page 3-192

3-175

3 Response Optimization

For an example of the performance improvement achieved with the Pattern
search method, see Improving Optimization Performance Using Parallel
Computing.

Related
Examples

• “How to Use Parallel Computing” on page 3-177

3-176

How to Use Parallel Computing

How to Use Parallel Computing

In this section...

“Configure Your System for Parallel Computing” on page 3-177

“Model Dependencies” on page 3-177

“Optimize Design Using Parallel Computing (GUI)” on page 3-179

“Optimize Design Using Parallel Computing (Code)” on page 3-182

“Troubleshooting” on page 3-183

Configure Your System for Parallel Computing
You can speed up model optimization using parallel computing on multicore
processors or multiprocessor networks. You can use parallel computing with
the Design Optimization tool and sdo.optimize. When you optimize the
model using parallel computing, the software uses the available parallel pool.
If no parallel pool is available and Automatically create a parallel pool is
selected in your Parallel Computing Toolbox preferences, then the software
starts a parallel pool using the settings in those preferences.

When you begin the optimization, the software automatically detects model
dependencies and temporarily adds them to the parallel pool workers.
However, to ensure that workers are able to access the undetected file and
path dependencies, create a cluster profile that specifies the same. The
parallel pool used to optimize the model must be associated with this cluster
profile. For information regarding creating a cluster profile, see “Create and
Modify Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies
Model dependencies are any referenced models, data (model variables etc.),
S-functions, and additional files necessary to run the model. Before starting

3-177

3 Response Optimization

the optimization, you must verify that all the remote workers can access the
model dependencies. Otherwise, you may get unexpected results.

Making File Dependencies Accessible to Remote Workers
When you use parallel computing, the Simulink Design Optimization software
helps you identify model path dependencies. To do so, the software uses the
Simulink Manifest Tools. However, the dependency analysis may not find all
the files required by your model. For example, folders containing code for your
model or block callbacks may not be detected. To learn more, see “Scope of
Dependency Analysis” in the Simulink documentation.

If your model has undetected file dependencies, then specify them in the Files
and Folders section of the cluster profile.

If your model has path dependencies that are undetected or inaccessible by
the remote workers, then add them to the list of model path dependencies.
For more information, see:

• “Optimize Design Using Parallel Computing (GUI)” on page 3-179

• “Optimize Design Using Parallel Computing (Code)” on page 3-182

Making Data Dependencies Accessible to Remote Workers
You can check whether a model has access to all its data dependencies,
such as variables required for model initialization. On your local machine,
complete the following steps:

1 Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible
to the model.

3 Simulate the model. If the model errors, a dependency is missing. For
example, if a simulation error occurs because a variable is not defined, you
can correct the problem in one of the following ways:

• Add the variable to the model workspace.

3-178

How to Use Parallel Computing

• Create a MATLAB script that creates the variable, and add the file to
the list of dependencies. Modify the PreLoadFcn callback of the model to
add a call to the MATLAB script.

Optimize Design Using Parallel Computing (GUI)
To optimize a model response using parallel computing in the Design
Optimization tool:

1 Ensure that the software can access parallel pool workers that use the
appropriate cluster profile.

For more information, see “Configure Your System for Parallel Computing”
on page 3-177.

2 Open the Design Optimization tool for the model.

3 Configure the design variables, design requirements, and, optionally,
optimization settings.

For more information, see “Specify Design Variables” on page 3-65,
“Specify Time-Domain Design Requirements” on page 3-25, “Specify
Frequency-Domain Design Requirements” on page 3-43, and “Optimization
Options” on page 3-77.

3-179

3 Response Optimization

4 Open the Parallel Options tab.

a In the Design Optimization tool, click Options.

b Click the Parallel Options tab.

5 Select the Use the parallel pool during optimization check box.

This option checks for model path dependencies in your Simulink model
and displays them in theModel path dependencies list box.

Note The automatic path dependencies check may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 3-177.

3-180

How to Use Parallel Computing

6 (Optional) Add the path dependencies that the automatic check does not
detect.

Specify the paths in the Model path dependencies list box. You can
specify the paths separated with a semicolon or on a new line.

3-181

3 Response Optimization

Alternatively, you can click Add path dependency to open a dialog box,
and select the folder to add.

7 (Optional) In the Model path dependencies list box, update the paths
on local drives to make them accessible to remote workers. For example,
change C:\ to \\\\hostname\\C$\\.

8 (Optional) If you modify the Simulink model such that it introduces a new
path dependency, then you must resync the path dependencies. Click Sync
path dependencies from model in the Parallel Options tab to rerun
the automatic dependency check for your model.

This action updates theModel path dependencies list box with any new
path dependency found in the model.

9 Click OK.

10 In the Design Optimization tool, click Optimize to optimize the model
response using parallel computing.

For information on troubleshooting problems related to optimization using
parallel computing, see “Troubleshooting” on page 3-183.

Optimize Design Using Parallel Computing (Code)
To optimize a model response using parallel computing at the command line:

1 Ensure that the software can access parallel pool workers that use the
appropriate cluster profile.

For more information, see “Configure Your System for Parallel Computing”
on page 3-177.

2 Open the model.

3 Specify design requirements and design variables.

4 Enable parallel computing using an optimization option set, opt.

opt = sdo.OptimizeOptions;
opt.UseParallel = 'always';

3-182

How to Use Parallel Computing

5 Find the model path dependencies.

dirs = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 3-177.

6 (Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')

7 (Optional) Modify dirs to make paths on local drives accessible to remote
workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

8 Add the path dependencies for optimization.

opt.ParallelPathDependencies = dirs;

9 Run the optimization.

[pOpt,opt_info] = sdo.optimize(opt_fcn,param,opt);

For information on troubleshooting problems related to optimization using
parallel computing, see “Troubleshooting” on page 3-183.

Troubleshooting

• “Why are the optimization results with and without using parallel
computing different?” on page 3-184

• “Why do I not see the optimization speedup I expected using parallel
computing?” on page 3-184

• “Why does the optimization using parallel computing not make any
progress?” on page 3-185

3-183

3 Response Optimization

• “Why does the optimization using parallel computing not stop when I click
the Stop optimization button?” on page 3-185

Why are the optimization results with and without using
parallel computing different?

• Different numerical precision on the client and worker machines can
produce marginally different simulation results. Thus, the optimization
method can take a completely different solution path and produce a
different result.

• The client and worker machines must have models in identical states. For
example, you must verify that the model running on the client uses exactly
the same variable values as the workers. You must also verify that the
client and workers are accessing model dependencies in identical states.

• When you use parallel computing with the Pattern search method, the
search is more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method”
on page 3-174.

Why do I not see the optimization speedup I expected using
parallel computing?

• When you optimize a model that does not have a large number of
parameters or does not take long to simulate, you might not see a speedup
in the optimization time. In such cases, the overhead associated with
creating and distributing the parallel tasks outweighs the benefits of
running the optimization in parallel.

• Using the Pattern search method with parallel computing might not
speed up the optimization time. Without parallel computing, the method
stops the search at each iteration when it finds a solution better than the
current solution. The candidate solution search is more comprehensive
when you use parallel computing. Although the number of iterations might
be larger, the optimization without using parallel computing might be
faster.

To learn more about the expected speedup, see “Parallel Computing with
the Pattern Search Method” on page 3-174.

3-184

How to Use Parallel Computing

Why does the optimization using parallel computing not make
any progress?
In some cases, the gradient computations on the remote worker machines
may silently error out when you use parallel computing. In such cases, the
Optimization Progress window shows that the f(x) and max constraint
values do not change, and the optimization terminates after two iterations
with the message Unable to satisfy constraints. To troubleshoot the
problem:

1 Run the optimization for a few iterations without parallel computing to
see if the optimization progresses.

2 Check whether the remote workers have access to all model dependencies.
Model dependencies include data variables and files required by the model
to run.

To learn more, see “Model Dependencies” on page 3-177.

Why does the optimization using parallel computing not stop
when I click the Stop optimization button?
When you use parallel computing, the software must wait until the current
optimization iteration completes before it notifies the workers to stop the
optimization. The optimization does not terminate immediately when you
click Stop, and, instead, appears to continue running.

See Also sdo.optimize | sdo.OptimizeOptions | sdo.getModelDependencies |
parpool

Related
Examples

• “Optimizing Time-Domain Response of Simulink® Models Using Parallel
Computing” on page 3-199

Concepts • “Speedup Using Parallel Computing” on page 3-172

3-185

3 Response Optimization

Optimization Does Not Make Progress

In this section...

“Should I worry about the scale of my responses and how constraints and
design requirements are discretized?” on page 3-186

“Why don’t the responses and parameter values change at all?” on page
3-186

“Why does the optimization stall?” on page 3-186

Should I worry about the scale of my responses
and how constraints and design requirements are
discretized?
No. Simulink Design Optimization software automatically normalizes
constraints, design requirement and response data.

Why don’t the responses and parameter values
change at all?
The optimization problem you formulated might be nonsmooth. This means
that small parameter changes have no effect on the amount by which response
signals satisfy or violate the constraints and only large changes will make a
difference. Try switching to a search-based method such as simplex search or
pattern search. Alternatively, look for initial guesses outside of the dead zone
where parameter changes have no effect. If you are optimizing the response
of a Simulink model, you could also try removing nonlinear blocks such as
Quantizer or Dead Zone.

Why does the optimization stall?
When optimizing a Simulink model, certain parameter combinations can
make the simulation stall for models with strong nonlinearities or frequent
mode switching. In these cases, the ODE solvers take smaller and smaller step
sizes. Stalling can also occur when the model’s ODEs become too stiff for some
parameter combinations. A symptom of this behavior is when the Simulink
model status is Running and clicking the Stop button fails to interrupt the
optimization. When this happens, you can try one of the following solutions:

3-186

Optimization Does Not Make Progress

• Switch to a different ODE solver, especially one of the stiff solvers.

• Specify a minimum step size.

• Disable zero crossing detection if chattering is occurring.

• Tighten the lower and upper bounds on parameters that cause simulation
difficulties. In particular, eliminate regions of the parameter space where
some model assumptions are invalid and the model behavior can become
erratic.

3-187

3 Response Optimization

Optimization Convergence

In this section...

“What to do if the optimization does not get close to an acceptable solution?”
on page 3-188

“Why does the optimization terminate before exceeding the maximum
number of iterations, with a solution that does not satisfy all the constraints
or design requirements?” on page 3-189

“What to do if the optimization takes a long time to converge even though it
is close to a solution?” on page 3-189

“What to do if the response becomes unstable and does not recover?” on
page 3-190

What to do if the optimization does not get close to
an acceptable solution?

• If you are using pattern search, check that you have specified appropriate
maximum and minimum values for all your tuned parameters or
compensator elements. The pattern search method looks inside these
bounds for a solution. When they are set to their default values of Inf
and -Inf, the method searches within ±100% of the initial values of the
parameters. In some cases this region is not large enough and changing the
maximum and minimum values can expand the search region.

• Your optimization problem might have local minima. Consider running one
of the search-based methods first to get closer to an acceptable solution.

• Reduce the number of tuned parameters and compensator elements by
removing from the design variables or from the Compensators pane (when
using a SISO Design Task) those parameters that you know only mildly
influence the optimized responses. After you identify reasonable values for
the key parameters, add the fixed parameters back to the tunable list and
restart the optimization using these reasonable values as initial guesses.

• The software may have encountered errors during the optimization.
Review the errors to determine if you can make changes to improve the
optimization results. Changes may require modifications to the model,
requirements, or optimization settings.

3-188

Optimization Convergence

- In the Design Optimization tool, the software creates a structure
named EvalErrors in the Design Optimization Workspace when
the optimization completes with errors. Export this structure to the
MATLAB workspace and examine its contents at the command line.
EvalErrors has two fields, Errors and DesignVars, containing the
errors encountered during optimization and the corresponding design
variable values. To reproduce a specific error, use sdo.setValueInModel
to run the model using the design variables that correspond to the error.

- At the command line, the second output of sdo.optimize, opt_info,
is a structure that provides information regarding the optimization.
opt_info.exitflag identifies the reason the optimization terminated.
For more information regarding exit flags, see “Exit Flags and Exit
Messages”.

Why does the optimization terminate before
exceeding the maximum number of iterations, with
a solution that does not satisfy all the constraints
or design requirements?

• It might not be possible to achieve your specifications. Try relaxing the
constraints or design requirements that the response signals violate the
most. After you find an acceptable solution to the relaxed problem, tighten
some constraints again and restart the optimization.

• The optimization might have converged to a local minimum that is not a
feasible solution. Restart the optimization from a different initial guess
and/or use one of the search-based methods to identify another local
minimum that satisfies the constraints.

What to do if the optimization takes a long time to
converge even though it is close to a solution?

• In a Design Optimization tool, click Stop to interrupt the optimization
when you think the current optimized response signals are acceptable.

When you use a SISO Design Task, click Stop Optimization in the
Optimization panel of the Response Optimization node in the Control
and Estimation Tools Manager, when you think the current optimized
response signals are acceptable.

3-189

3 Response Optimization

• If you use the gradient descent method, try restarting the optimization.
Restarting resets the Hessian estimate and might speed up convergence.

• Increase the convergence tolerances in the Optimization Options dialog
to force earlier termination.

• Relax some of the constraints or design requirements to increase the size of
the feasibility region.

What to do if the response becomes unstable and
does not recover?
While the optimization formulation has explicit safeguards against unstable
or divergent response signals, the optimization can sometimes venture into
an unstable region where simulation results become erratic and gradient
methods fail to find a way back to the stable region. In these cases, you can
try one of the following solutions:

• Add or tighten the lower and upper bounds on compensator element and
parameter values. Instability often occurs when you allow some parameter
values to become too large.

• Use a search-based method to find parameter values that stabilize the
response signals and then start the gradient-based method using these
initial values.

• When optimizing responses in a SISO Design Task, you can try adding
additional design requirements that achieve the same or similar goal.
For example, in addition to a settling time design requirement on a step
response plot, you could add a settling time design requirement on a
root-locus plot that restricts the location of the real parts of the poles. By
adding overlapping design requirements in this way, you can force the
optimization to meet the requirements.

3-190

Optimization Speed and Parallel Computing

Optimization Speed and Parallel Computing

In this section...

“How can I speed up the optimization?” on page 3-191

“Why are the optimization results with and without using parallel
computing different?” on page 3-192

“Why do I not see the optimization speedup I expected using parallel
computing?” on page 3-192

“Why does the optimization using parallel computing not make any
progress?” on page 3-193

“Why does the optimization using parallel computing not stop when I click
the Stop optimization button?” on page 3-193

How can I speed up the optimization?

• The optimization time is dominated by the time it takes to simulate the
model. When optimizing a Simulink model, you can enable the Accelerator
mode using Simulation > Mode > Accelerator in the Simulink Editor, to
dramatically reduce the optimization time.

Note The Rapid Accelerator mode in Simulink software is not supported
for speeding up the optimization. For more information, see “Accelerating
Model Simulations During Optimization” on page 3-170.

• The choice of ODE solver can also significantly affect the overall
optimization time. Use a stiff solver when the simulation takes many small
steps, and use a fixed-step solver when such solvers yield accurate enough
simulations for your model. (These solvers must be accurate in the entire
parameter search space.)

• Reduce the number of tuned compensator elements or parameters and
constrain their range to narrow the search space.

• When specifying parameter uncertainty (not available when optimizing
responses in a SISO Design Task), keep the number of sample values small

3-191

3 Response Optimization

since the number of simulations grows exponentially with the number of
samples. For example, a grid of 3 parameters with 10 sample values for
each parameter requires 103=1000 simulations per iteration.

Why are the optimization results with and without
using parallel computing different?

• Different numerical precision on the client and worker machines can
produce marginally different simulation results. Thus, the optimization
method can take a completely different solution path and produce a
different result.

• The client and worker machines must have models in identical states. For
example, you must verify that the model running on the client uses exactly
the same variable values as the workers. You must also verify that the
client and workers are accessing model dependencies in identical states.

• When you use parallel computing with the Pattern search method, the
search is more comprehensive and can result in a different solution.

To learn more, see “Parallel Computing with the Pattern Search Method”
on page 3-174.

Why do I not see the optimization speedup I
expected using parallel computing?

• When you optimize a model that does not have a large number of
parameters or does not take long to simulate, you might not see a speedup
in the optimization time. In such cases, the overhead associated with
creating and distributing the parallel tasks outweighs the benefits of
running the optimization in parallel.

3-192

Optimization Speed and Parallel Computing

• Using the Pattern search method with parallel computing might not
speed up the optimization time. Without parallel computing, the method
stops the search at each iteration when it finds a solution better than the
current solution. The candidate solution search is more comprehensive
when you use parallel computing. Although the number of iterations might
be larger, the optimization without using parallel computing might be
faster.

To learn more about the expected speedup, see “Parallel Computing with
the Pattern Search Method” on page 3-174.

Why does the optimization using parallel computing
not make any progress?
In some cases, the gradient computations on the remote worker machines
may silently error out when you use parallel computing. In such cases, the
Optimization Progress window shows that the f(x) and max constraint
values do not change, and the optimization terminates after two iterations
with the message Unable to satisfy constraints. To troubleshoot the
problem:

1 Run the optimization for a few iterations without parallel computing to
see if the optimization progresses.

2 Check whether the remote workers have access to all model dependencies.
Model dependencies include data variables and files required by the model
to run.

To learn more, see “Model Dependencies” on page 3-177.

Why does the optimization using parallel computing
not stop when I click the Stop optimization button?
When you use parallel computing, the software must wait until the current
optimization iteration completes before it notifies the workers to stop the
optimization. The optimization does not terminate immediately when you
click Stop, and, instead, appears to continue running.

3-193

3 Response Optimization

Undesirable Parameter Values

In this section...

“What to do if the optimization drives the tuned compensator elements and
parameters to undesirable values?” on page 3-194

“What to do if the optimization violates bounds on parameter values?” on
page 3-194

What to do if the optimization drives the tuned
compensator elements and parameters to
undesirable values?

• When a tuned compensator element or parameter is positive, or when its
value is physically constrained to a given range, enter the lower and upper
bounds (Minimum and Maximum) in one of the following:

- Dialog box to select design variables (in Design optimization tool)

- Compensators pane (in a SISO Design Task)

This information helps guide the optimization method towards a reasonable
solution.

• Specify initial guesses that are within the range of desirable values.

• In the Compensators pane in a SISO Design Task, verify that no
integrators/differentiators are selected for optimization. Optimizing the
pole/zero location of integrators/differentiators can result in drastic changes
in the system gain and lead to undesirable values.

What to do if the optimization violates bounds on
parameter values?
The Gradient descent optimization method fmincon violates the parameter
bounds when it cannot simultaneously satisfy the signal constraints and the
bounds. When this happens, try one of the following:

• Specify a different value for the parameter bound and restart the
optimization. A guideline is to adjust the bound by 1% of the typical value.

3-194

Undesirable Parameter Values

For example, for a parameter with a typical value of 1 and lower bound of
0, change the lower bound to 0.01.

• Relax the signal constraints and restart the optimization. This approach
results in a different solution path for the Gradient descent method.

• Restart the optimization immediately after it terminates by clicking
Optimize in the Design Optimization tool. This approach uses the
previous optimization results as the starting point for the next optimization
cycle to refine the results.

• Use the following two-step approach to perform the optimization:

1 Run an initial optimization to satisfy the signal constraints.

For example, run the optimization using the Simplex search method.
This method satisfies the signal constraints but does not support the
bounds on parameter values. The results obtained using this method
provide the starting point for the optimization performed in the next
step. To learn more about this method, see the fminsearch function
reference page in the Optimization Toolbox documentation.

2 Reconfigure the optimization by selecting a different optimization
method to satisfy both the signal constraints and the parameter bounds.

For example, change the optimization method to Gradient descent
and run the optimization again.

Tip If Global Optimization Toolbox software is installed, you can select the
Pattern search optimization method to optimize the model response.

3-195

3 Response Optimization

Reverting to Initial Parameter Values

How do I quit an optimization and revert to my
initial parameter values?

• Before running an optimization, do one of the following:

- In the Design Optimization tool, click Options. Uncheck Update
model at end of optimization in the General Options tab.

- In the Design Optimization tool, click Options. Select Save optimized
variable values as new design variable set in the General Options
tab.

- Make a copy of the design variable set in the Design Optimization
Workspace.

If you want to revert to the initial parameter values after the optimization
terminates or you stop the optimization by clicking Stop, select the design
variable that contains the initial values in the Design Variable Set

drop-down list and click adjacent to Design variables Set. Select
the design variables in the dialog box and click Update model variable
values to revert the model parameters to their original values.

• When using a SISO Design Task, the Start Optimization button becomes
a Stop Optimization button after the optimization has begun. To quit
the optimization, click the Stop Optimization button. To revert to the
initial parameter values, select Edit > Undo Optimize compensators
from the menu in the SISO Design Tool window.

3-196

Manage Design Optimization Tool Session

Manage Design Optimization Tool Session

In this section...

“Save a Session” on page 3-197

“Load a Session” on page 3-197

Save a Session
Saving a session lets you reuse your settings and optimization results later.
These settings include design requirements, design and uncertain variables,
plots and optimization settings. Each Design Optimization tool session is
associated with a Simulink model.

You can save the session as a MAT-file or workspace variable:

• To save the session as a MAT-file, click Save in the Design Optimization
tab. A window opens where you specify the MAT-file name.

• To save the session as a model or MATLAB workspace variable, select
Save to model workspace or Save to base workspace in the Save
drop-down list.

Load a Session
You can load a saved MAT-file or workspace session:

1 Open a Design Optimization tool for the model.

3-197

3 Response Optimization

2 To load a MAT-file, click Open in the Design Optimization tab. A
window opens where you select the MAT-file to load.

To load a workspace variable, select Open from model workspace or
Open from base workspace in the Open drop-down list.

3-198

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

Optimizing Time-Domain Response of Simulink® Models
Using Parallel Computing

This example shows how to use parallel computing to optimize the
time-domain response of a Simulink® model. You use Simulink® Design
Optimization™ and Parallel Computing Toolbox™ to tune the gains of a
discrete PI controller of a boiler to meet the design requirements. The example
also shows how the software automatically handles model path dependencies.

This example requires Parallel Computing Toolbox™.

Opening the Model

The Simulink model consists of a boiler model and a discrete PI controller.
When using parallel computing, Simulink Design Optimization performs an
automatic path dependency check, which recognizes the boiler model library
as an installed library.

In order to illustrate how model path dependencies are handled when using
parallel computing, we copy the boiler model and library block to a temporary
folder before opening the model.

pathToLib = boilerpressure_setup; %Copies boiler model and library to a t
addpath(pathToLib);
open_system('boilerpressure_demo')

Starting parpool using the 'local' profile ... connected to 4 workers.

Design Requirements

The boiler pressure is regulated by a discrete PI controller. The design
requirement for the controller is to limit the pressure variation of the boiler
within +-%5 of the nominal pressure.

The initial controller has fairly good regulation characteristics but in the
presence of additional heat disturbances, modeled by the Heat Disturbance
block, we want to tune the controller performance to provide tighter pressure
regulation.

3-199

3 Response Optimization

Double-click the ’Response Optimization GUI with preloaded data’ block in
the Simulink model to open a pre-configured SDOTOOL. The SDOTOOL is
configured with:

1. Upper and lower bounds representing a +-5% allowable range on the drum
pressure

2. A reference tracking objective to minimize the deviation of the drum
pressure from nominal

3. The PI controller gains, Kp and Ki, are selected for tuning

Click Plot Current Response to display the drum pressure variations with
the initial controller.

Configuring and Running the Optimization in the GUI Using Parallel Computing

When computing the model response with the initial controller, this complex
model took a long time to simulate. Using parallel computing can reduce the
optimization time by simulating the model in parallel. For more information
on parallel computing and optimization performance see the tutorial
"Improving Optimization Performance Using Parallel Computing".

To configure the optimization problem to use parallel computing click
Options in the SDOTOOL and select the Parallel Options tab. Select the
"Use the parallel pool during optimization" option. This triggers an automated
search for any model path dependencies. In this example, the folder that
contains the Boiler Library block is found as a model path dependency, and is
displayed in the Model path dependencies list box.

Note that the model path dependencies must be accessible by all the workers
in the MATLAB pool. In this example, we opened a local MATLAB pool, and
all the workers have access to the folder containing the Boiler Model library.

3-200

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

You can also manually edit the path dependency list, add paths using the
folder browser, or rerun the automatic dependency checker.

Clicking OK configures the optimization to use parallel computing.

To run the optimization click the Optimize button. A progress window opens
displaying optimization progress.

The final response shows that the optimized regulator tracks the reference
pressure much more closely.

Configuring and Running the Optimization at the Command Line

You can also use the command line functions to configure the optimization to
use parallel computing and run the optimization.

Select the model variables for optimization and set lower limits

p = sdo.getParameterFromModel('boilerpressure_demo',{'Kp','Ki'});
p(1).Minimum = 0.001;
p(2).Minimum = 0.001;

Select the model signal to bound and create a simulator to simulate the model.

nPressure = Simulink.SimulationData.SignalLoggingInfo;
nPressure.BlockPath = 'boilerpressure_demo/1//y0';
nPressure.OutputPortIndex = 1;
nPressure.LoggingInfo.NameMode = 1;
nPressure.LoggingInfo.LoggingName = 'nPressure';

simulator = sdo.SimulationTest('boilerpressure_demo');
simulator.LoggingInfo.Signals = nPressure;

Get the optimization requirements defined by the check blocks in the model so
that we can use them in the optimization problem.

bnds = getbounds('boilerpressure_demo/Drum pressure constraint');
PressureLimits = [bnds{:}];

3-201

3 Response Optimization

bnds = getbounds('boilerpressure_demo/Drum pressure constraint(Reference Tr
PressureRegulation = [bnds{:}];
requirements = struct(...

'PressureLimits', PressureLimits, ...
'PressureRegulation', PressureRegulation);

Define the function called during optimization. Notice that the function uses
the simulator and requirements defined earlier to evaluate the design.

evalDesign = @(p) boilerpressure_design(p,simulator,requirements);
type boilerpressure_design

function design = boilerpressure_design(p,simulator,requirements)
%BOILERPRESSURE_DESIGN
%
% The boilerpressure_design function is used to evaluate a boiler
% controller design design.
%
% The |p| input argument is the vector of controller parameters.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |boilerpressure_demo| model and log simulation signals.
%
% The |requirements| input argument contains the design requirements used
% to evaluate the boiler controller design.
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction

% Copyright 2011 The MathWorks, Inc.

%% Simulate the model
%
% Use the simulator input argument to simulate the model and log model
% signals.
%

3-202

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

% First ensure that we simulate the model with the parameter values chosen
% by the optimizer.
%
simulator.Parameters = p;
%%
% Simulate the model and log signals.
%
simulator = sim(simulator);
%%
% Get the simulation signal log, the simulation log name is defined by the
% model |SignalLoggingName| property
%
logName = get_param('boilerpressure_demo','SignalLoggingName');
simLog = get(simulator.LoggedData,logName);

%% Evaluate the design requirements
%
% Use the requirements input argument to evaluate the design requirements
%
% Check the Pressure signal against the |PressureLimits| requirements.
%
nPressure = get(simLog,'nPressure');
c = [...

evalRequirement(requirements.PressureLimits(1),nPressure.Values); ...
evalRequirement(requirements.PressureLimits(2),nPressure.Values)];

%%
% Use the PressureLimits requirements as non-linear constraints for
% optimization.
design.Cleq = c(:);
%%
% Check the pressure signal against the |PressureRegulation| requirement.
%
f = evalRequirement(requirements.PressureRegulation,nPressure.Values);
%%
% Use the PressureRegulation requirement as an objective for optimization.
design.F = f;
end

Setup optimization options to use the parallel pool and specify the model and
model dependencies used during optimization.

3-203

3 Response Optimization

opt = sdo.OptimizeOptions;
opt.UseParallel = 'always';
opt.OptimizedModel = 'boilerpressure_demo';
opt.ParallelPathDependencies = sdo.getModelDependencies('boilerpressure_dem

Warning: the following problems were found during MATLAB code analysis:
<a href="matlab:dependencies.openref('BlockCallback,OpenFcn','boilerpressur

First argument to "evalin" is not a literal string

Run the optimization

[pOpt,info] = sdo.optimize(evalDesign,p,opt);

Configuring parallel workers for optimization...
Parallel workers configured for optimization.

Optimization started 31-May-2013 11:13:52

max Step-size First-order
Iter F-count f(x) constraint optimality

0 1 17.5068 0
1 2 11.6563 0 1.25 32.2
2 3 8.32632 0 1.27 17.4
3 4 0.694611 0 70.1 0.0391
4 5 0.562489 0 4.3 0.0355
5 7 0.543708 0 2.79 0.0316
6 12 0.543708 0 0.0515 0.0316

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.
Removing data from parallel workers...
Data removed from parallel workers.

Closing the Model

After the model is optimized, we remove the boiler model and library file
from the temporary folder.

3-204

Optimizing Time-Domain Response of Simulink® Models Using Parallel Computing

rmpath(pathToLib)
boilerpressure_cleanup(pathToLib)
bdclose('boilerpressure_demo')

Sending a stop signal to all the workers ... stopped.

3-205

3 Response Optimization

3-206

4

Sensitivity Analysis

• “What Is Sensitivity Analysis?” on page 4-2

• “Sampling Parameters for Sensitivity Analysis” on page 4-4

• “Sensitivity Analysis Methods” on page 4-11

• “Perform Sensitivity Analysis Using Parallel Computing” on page 4-14

• “Design Exploration using Parameter Sampling (Code)” on page 4-18

• “Identify Key Parameters for Estimation (Code)” on page 4-29

4 Sensitivity Analysis

What Is Sensitivity Analysis?
Generally, sensitivity analysis is defined as the study of how uncertainty in
the output of a model can be attributed to different sources of uncertainty in
the model input[1]. In the context of using Simulink Design Optimization
software, sensitivity analysis refers to understanding how the parameters
and states (optimization design variables) of a Simulink model influence the
optimization cost function. Examples of using sensitivity analysis include:

• Before optimization — Determine the influence of the parameters of a
Simulink model on the output. Use sensitivity analysis to rank parameters
in order of influence so that you can determine the most influential
parameters. Optimize the model by tuning the most influential parameters
or perform experiments to better characterize those parameters.

• After optimization — Test how robust the cost function is to small changes
in the values of optimized parameters.

One approach to sensitivity analysis is local sensitivity analysis, which is
derivative based (numerical or analytical). Mathematically, the sensitivity of
the cost function with respect to certain parameters is equal to the partial
derivative of the cost function with respect to those parameters. The term
local refers to the fact that all derivatives are taken at a single point. For
simple cost functions, this approach is efficient. However, this approach can
be infeasible for complex models, where formulating the cost function (or the
partial derivatives) is nontrivial. For example, models with discontinuities do
not always have derivatives.

Local sensitivity analysis is a one-at-a-time (OAT) technique. OAT techniques
analyze the effect of one parameter on the cost function at a time, keeping the
other parameters fixed. They explore only a small fraction of the design space,
especially when there are many parameters. Also, they do not provide insight
about how the interactions between parameters influence the cost function.

Another approach to sensitivity analysis is global sensitivity analysis,
often implemented using Monte Carlo techniques. This approach uses a
representative (global) set of samples to explore the design space. Use
Simulink Design Optimization software to perform global sensitivity analysis.
The workflow is as follows:

4-2

What Is Sensitivity Analysis?

1 Sample the model parameters using experimental design principles. That
is, for each parameter, generate multiple values that the parameter can
assume. Define the parameter sample space by specifying probability
distributions for each parameter. You can also specify parameter
correlations.

For information about sampling parameters, see “Sampling Parameters for
Sensitivity Analysis” on page 4-4.

2 Evaluate the optimization cost function at each sample point. You can plot
the cost function output for the samples to visually analyze trends.

3 (Optional) Formally analyze the relation between the cost function and
the samples. Analysis methods include correlation, partial correlation
(requires a Statistics Toolbox™ license), and standardized regression. You
can configure each analysis method to use either raw or ranked data.

For information about the analysis methods, see “Sensitivity Analysis
Methods” on page 4-11.

References
[1] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D., Saisana, M., and Tarantola, S. Global Sensitivity Analysis. The Primer,
John Wiley and Sons, 2008.

See Also sdo.sample | sdo.evaluate | sdo.analyze | sdo.scatterPlot

Related
Examples

• “Design Exploration using Parameter Sampling (Code)” on page 4-18
• “Identify Key Parameters for Estimation (Code)” on page 4-29

Concepts • “Sensitivity Analysis Methods” on page 4-11
• “Sampling Parameters for Sensitivity Analysis” on page 4-4

4-3

4 Sensitivity Analysis

Sampling Parameters for Sensitivity Analysis
You can perform global sensitivity analysis using Simulink Design
Optimization software. You vary the value of the Simulink model parameters
and states of interest in a specific range. These parameters and states are
the optimization design variables, collectively referred to as parameters.
Each combination of values for the different parameters is referred to as a
sample or sample point. A collection of samples is referred to as a design
space, parameter sample space, or, simply, sample space. You evaluate the
optimization cost function for each point in the sample space. Then, you
analyze the relation between the parameter value variations and the cost
function value variations to understand how the parameters influence the
cost function.

Each model evaluation has a computational expense and can be time
intensive. Therefore, ideally, you want to use the smallest sample set that
yields useful results. You can use techniques such as design of experiments
(DOE) (also referred to as experimental design) to choose an efficient sample
set for sensitivity analysis.

Use sdo.ParameterSpace to define the parameter space. This object specifies
the probability distributions and correlations for the parameters. Use this
object as an input to sdo.sample to generate samples from the specified
parameter space.

Common considerations for parameter sampling include:

• “Probability Distribution” on page 4-4

• “Bounds” on page 4-5

• “Number of Samples” on page 4-5

• “Method of Sampling” on page 4-5

• “Custom Sample Sets” on page 4-8

Probability Distribution
Specify the probability distribution function that is best suited for each
parameter. Use your knowledge of the system (empirical or theoretical) to
choose the probability distribution for the parameter.

4-4

Sampling Parameters for Sensitivity Analysis

The Simulink Design Optimization software allows you to specify uniform
(default) and normal distributions. If you have a Statistics Toolbox license,
you can also specify any univariate probability distribution that the toolbox
provides.

Specify the probability distribution of a parameter using the
ParameterDistributions property of an sdo.ParameterSpace object.

Bounds
Specify the upper and lower bounds of the value of a parameter. These bounds
define the sampling range for the parameter. Use your knowledge of the
parameter’s range of likely values to choose the bounds.

To specify the bounds of a parameter, use the Minimum and Maximum properties
of a param.Continuous object. Use this updated param.Continuous object
when you specify the parameter space using an sdo.ParameterSpace object.

Number of Samples
Ideally, you want to use the smallest number of samples that yield useful
results, because each sample requires a model evaluation.

As the number of parameters increases, the number of samples needed to
explore the design space generally increases. For correlation or regression
analysis, consider using 10Np samples, where Np is the number of
parameters.

Specify the number of samples as the second input argument of sdo.sample.

Method of Sampling
After specifying the probability distributions and bounds for the parameters,
you generate samples for the specified parameter space. You can specify
the method used to generate these samples using the Method property of
an sdo.SampleOptions object. Use this object as an input to sdo.sample
to specify the sampling options. Specify the sampling method as one of the
following:

4-5

4 Sensitivity Analysis

• 'random' — Random samples drawn from the probability distributions
specified for the parameters.

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses
the Iman-Conover method to impose the parameter correlations.

• 'lhs'— Latin hypercube samples drawn from the probability distributions
specified for the parameters. Use this option for a more systematic
space-filling approach than random sampling. The following figure shows
the difference between random sampling and Latin hybercube design-based
sampling.

The figure shows 8 samples for 2 parameters, drawn from a uniform
distribution, in the interval from 0 to 1. Random sampling can result in
the clustering of samples (see the top right-hand corner of the plot). Latin
hypercube designs, with their stratified approach to sampling, are better
able to avoid such clustering.

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses
the Iman-Conover method to impose the parameter correlations.

This method requires a Statistics Toolbox license.

4-6

Sampling Parameters for Sensitivity Analysis

• 'copula' — Random samples drawn from a copula. Use this option to
impose correlations between the parameters.

You can use either a Gaussian copula (default) or a t copula. Specify
the choice of copula using the MethodOptions property of the
sdo.SampleOptions object. Use t copulas when the probability of extreme
parameter values is not negligible. You must specify the degrees of freedom
for a t copula. As you increase the degrees of freedom, the t copula converges
to the Gaussian copula, and the probability of extreme parameter values
becomes negligible. The following figure shows 1000 samples drawn for 2
parameters, in the interval from 0 to 1, using the Gaussian and t copulas.

In comparison to the Gaussian copula, the t copula has more samples that
represent the extreme values of the parameters.

You can specify the correlation type as either Spearman’s rank correlation
or Kendall’s rank correlation.

For the 'copula' method, you must also specify the value of the
RankCorrelation property of the sdo.ParameterSpace object that you
use for sampling.

This method requires a Statistics Toolbox license.

4-7

4 Sensitivity Analysis

Custom Sample Sets
You can specify a custom sample set. For example, suppose you want to
generate a 1000 samples of the model parameter, R, which is a resistor.

R = param.Continuous('R',10);

Sample R in the 5% range of its nominal value. However, resistors of 1%
tolerance are removed. So, you do not need to sample R in the 1% range.
You can use the following approaches:

• “Specify Customized Probability Distribution” on page 4-8

• “Create Table of Custom Samples” on page 4-9

To visualize the samples and validate the sample space, use sdo.scatterPlot.

Specify Customized Probability Distribution
Use a customized probability distribution to configure the parameter space
and generate samples.

You can use tools provided by the Statistics Toolbox software to create
customized probability distributions. For example,

x = [0.95 0.99 1.01 1.05]*R.Value;
F = [0 0.5 0.5 1];

pdR = makedist('PiecewiseLinear','x',x,'Fx',F);

x = linspace(.9*R.Value, 1.1*R.Value, 1e3);
plot(x, pdf(pdR, x));

4-8

Sampling Parameters for Sensitivity Analysis

The call to makedist specifies a piecewise linear distribution for the resistor
value, with a “hole” in the 1% range.

Specify pdR as the probability distribution for the R parameter when you
create the sdo.ParameterSpace object to define the parameter space.

ps = sdo.ParameterSpace(R,pdR);

Generate the samples using sdo.sample.

x = sdo.sample(ps,1000);

Create Table of Custom Samples
Create a table of the custom samples. Specify one column for each parameter,
and one row for each sample. The column name must be the same as the
parameter name.

For example:

4-9

4 Sensitivity Analysis

Rval = R.Value;
Ns = 1000;
x = table([linspace(.95*Rval,.99*Rval,Ns*.5) linspace(1.01*Rval,1.05*Rval,N

Consider another example, where you have two model parameters, A and B.

A = param.Continuous('A',1);
B = param.Continuous('B',10);

Vary A for the following values: 2,3,4. Vary B for the following values:
20,30,40. Generate a table of samples for every combination of A and B.

Avals = [2 3 4];
Bvals = [20 30 40];
[Agrid,Bgrid] = meshgrid(Avals,Bvals);
x = table(Agrid(:),Bgrid(:),'VariableNames',{'A','B'});

See Also sdo.sample | sdo.SampleOptions

Related
Examples

• “Design Exploration using Parameter Sampling (Code)” on page 4-18

Concepts • “What Is Sensitivity Analysis?” on page 4-2

4-10

Sensitivity Analysis Methods

Sensitivity Analysis Methods
To analyze how the parameters and states (collectively referred to as
parameters) of a Simulink model influence the cost function, first generate
samples of the parameters. Then, evaluate the cost function for each sample.
Finally, analyze the relationship between the parameter variations and the
cost function values. Perform this analysis in the following ways:

• “Visual Analysis” on page 4-11

• “Quantitative Analysis” on page 4-11

Visual Analysis
Plot the cost function evaluations against the parameter samples to identify
trends. This method is informal and provides visual intuition about how the
various parameters affect the cost function.

You can use tools such as:

• sdo.scatterPlot— Scatter plot of the parameter samples against the cost
function evaluation

• surf, mesh — 3-D plot of samples of two parameters against the cost
function evaluation

Quantitative Analysis
Obtain summary statistics using sdo.analyze. This function performs linear
correlation analysis by default. You can specify other analysis method(s)
using an sdo.AnalyzeOptions options object.

Available analysis methods include:

4-11

4 Sensitivity Analysis

Method Name Description

Correlation Use to analyze how a model
parameter and the cost function are
correlated

Partial correlation (requires a
Statistics Toolbox license)

Use to analyze how a model
parameter and the cost function are
correlated, removing the effects of
the remaining parameters

Standardized regression Use when you expect that the model
parameters linearly influence the
cost function

For information about the formulations of these methods, see
sdo.AnalyzeOptions.

Linear vs. Ranked Analysis
Each of these methods supports the following analysis types:

• Linear analysis, also referred to as Pearson analysis — Uses raw data
for analysis. Best suited when you expect a linear relation between the
parameters and cost function.

• Ranked analysis, also referred to as Spearman analysis and ranked
transformation — Uses ranks of data for analysis. Best suited when you
expect a nonlinear monotonic relation between the parameters and the
cost function.

For an example of ranked analysis, suppose you had the following data set:

x1 x2 y

9 20 340

5 60 106

2.3 50.4 870.5

Here x1 and x2 are model parameters, and y is the cost function. Each row
represents a sample and the associated cost function evaluation.

4-12

Sensitivity Analysis Methods

The data is ranked on a per column basis. For example, when you rank the
data in column 1 (x1), which contains the entries 9, 5, and 2.3, the ranked
data is equal to 3, 2, and 1. The ranked data set for the samples of x1, x2
and y are as follows:

x1 x2 y

3 1 2

2 3 1

1 2 3

The ranked data set can be used for correlation, partial correlation, or
standardized regression analysis.

Linear analysis retains information about intervals between data values,
whereas ranked analysis does not.

See Also sdo.AnalyzeOptions | sdo.analyze | sdo.sample | sdo.evaluate

Related
Examples

• “Identify Key Parameters for Estimation (Code)” on page 4-29

Concepts • “What Is Sensitivity Analysis?” on page 4-2

4-13

4 Sensitivity Analysis

Perform Sensitivity Analysis Using Parallel Computing

In this section...

“Configure Your System for Parallel Computing” on page 4-14

“Model Dependencies” on page 4-14

“Perform Sensitivity Analysis Using Parallel Computing” on page 4-16

Configure Your System for Parallel Computing
To perform global sensitivity analysis, you sample the model parameters
and states (collectively referred to as parameters), and evaluate the cost
function for each sample. You use sdo.evaluate to perform the cost function
evaluation (also referred to as model evaluation). Evaluating the model
for a large number of samples can be time consuming. You can speed up
the performance of sdo.evaluate using parallel computing on multicore
processors or multiprocessor networks. When you call sdo.evaluate with the
parallel computing option enabled, the software uses the available parallel
pool. If no parallel pool is available and Automatically create a parallel
pool is selected in your Parallel Computing Toolbox preferences, then the
software starts a parallel pool using the settings in those preferences.

To ensure that the parallel workers are able to access the file and path
dependencies, create a cluster profile that specifies the same. The parallel
pool used to evaluate the model must be associated with this cluster profile.
For information regarding creating a cluster profile, see “Create and Modify
Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

Model Dependencies
Model dependencies are any referenced models, data (model variables etc.),
S-functions, or additional files necessary to run the model. Before starting the

4-14

Perform Sensitivity Analysis Using Parallel Computing

parallel model evaluation, you must verify that all the remote workers can
access the model dependencies. Otherwise, you may get unexpected results.

Making File Dependencies Accessible to Remote Workers
When you use parallel computing, the Simulink Design Optimization software
helps you identify model path dependencies. To do so, the software uses the
Simulink Manifest Tools. However, the manifest tools may not find all the
files required by your model. For example, folders containing code for your
model or block callbacks may not be detected. To learn more, see “Scope of
Dependency Analysis” in the Simulink documentation.

• If your model has undetected file dependencies, then specify them in the
Files and Folders section of the cluster profile.

• If your model has path dependencies that are undetected or inaccessible by
the remote workers, then add them to the list of model path dependencies.
For more information, see “Perform Sensitivity Analysis Using Parallel
Computing” on page 4-16.

Making Data Dependencies Accessible to Remote Workers
You can check whether a model has access to all its data dependencies,
such as variables required for model initialization. On your local machine,
complete the following steps:

1 Close the model, and clear the MATLAB workspace.

2 Load the model. Verify that only the specified dependencies are accessible
to the model.

3 Simulate the model. If the model errors, a dependency is missing. For
example, if a simulation error occurs because a variable is not defined, you
can correct the problem in one of the following ways:

• Add the variable to the model workspace.

• Create a MATLAB script that creates the variable, and add the file to
the list of dependencies. Modify the PreLoadFcn callback of the model to
add a call to the MATLAB script.

4-15

4 Sensitivity Analysis

Perform Sensitivity Analysis Using Parallel
Computing
To evaluate a model using parallel computing:

1 Ensure that the software can access parallel pool workers that use the
appropriate cluster profile.

For more information, see “Configure Your System for Parallel Computing”
on page 4-14.

2 Open the model.

3 Specify the cost function and generate parameter samples for sensitivity
analysis.

4 Enable parallel computing using an evaluation option set, opt.

opt = sdo.EvaluateOptions;
opt.UseParallel = 'always';

5 Find the model path dependencies.

dirs = sdo.getModelDependencies(modelname)

Note sdo.getModelDependencies may not detect all the path
dependencies in your model.

For more information, see “Model Dependencies” on page 4-14.

6 (Optional) Modify dirs to include the path dependencies that
sdo.getModelDependencies does not detect.

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')

7 (Optional) Modify dirs to make paths on local drives accessible to remote
workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

8 Add the path dependencies for evaluation.

4-16

Perform Sensitivity Analysis Using Parallel Computing

opt.ParallelPathDependencies = dirs;

9 Specify the name of the model to be evaluated in parallel.

opt.ModelName = modelname;

10 Evaluate the model.

[pOpt,opt_info] = sdo.evaluate(fcn,samples,opt);

See Also sdo.evaluate | sdo.EvaluateOptions | sdo.getModelDependencies |
parpool

4-17

4 Sensitivity Analysis

Design Exploration using Parameter Sampling (Code)
This example shows how to sample and explore a design space. You explore
the design of a Continuously Stirred Tank Reactor to minimize product
concentration variation and production cost. The design includes feed stock
uncertainty.

You explore the CSTR design by characterizing design parameters using
probability distributions. You use the distributions to generate random
samples in the design space and perform Monte-Carlo evaluation of the design
at these sample points. You then create plots to visualzize the design space
and select the best design. You can then use the best design as an initial
guess for optimization of the design.

You can also use the sampled design space and Monte-Carlo evaluation output
to analyze the influence of design parameters on the design, see "Sensitivity
Analysis for Parameter Estimation (Code)"

Continuously Stirred Tank Reactor (CSTR) Model

Continuously Stirred Tank Reactors (CSTRs) are common in the process
industry. The Simulink model, sdoCSTR, models a jacketed diabatic (i.e.,
non-adiabatic) tank reactor described in [1]. The CSTR is assumed to be
perfectly mixed, with a single first-order exothermic and irreversible reaction,
. , the reactant, is converted to , the product.

In this example, you use the following two-state CSTR model, which uses
basic accounting and energy conservation principles:

• , and - Concentrations of A in the CSTR and in the feed [kgmol/m^3]

• , , and - CSTR, feed, and coolant temperatures [K]

4-18

Design Exploration using Parameter Sampling (Code)

• and - Volumetric flow rate [m^3/h] and the density of the material in
the CSTR [1/m^3]

• and - Height [m] and heated cross-sectional area [m^2] of the CSTR.

• - Pre-exponential non-thermal factor for reaction [1/h]

• and - Activation energy and heat of reaction for [kcal/kgmol]

• - Boltzmann’s gas constant [kcal/(kgmol * K)]

• and - Heat capacity [kcal/K] and heat transfer coefficients [kcal/(m^2 *
K * h)]

Open the Simulink model.

open_system('sdoCSTR');

CSTR Design Problem

Assume that the CSTR is cylindrical, with the coolant applied to the base
of the cylinder. Tune the CSTR cross-sectional area, , and CSTR height, ,
to meet the following design goals:

• Minimize the variation in residual concentration, . Variations in the
residual concentration negatively affect the quality of the CSTR product.
Minimizing the variations also improves CSTR profit.

• Minimize the mean coolant temperature . Heating or cooling the
jacket coolant temperature is expensive. Minimizing the mean coolant
temperature improves CSTR profit.

The design must allow for variations in the quality of supply feed
concentration, , and feed temperature, . The CSTR is fed with feed from
different suppliers. The quality of the feed differs from supplier to supplier
and also varies within each supply batch.

Specify Design Variables

4-19

4 Sensitivity Analysis

Select the following model parameters as design variables:

• Cylinder cross-sectional area

• Cylinder height

p = sdo.getParameterFromModel('sdoCSTR',{'A','h'});

Limit the cross-sectional area to a range of [0.2 2] m^2.

p(1).Minimum = 0.2;
p(1).Maximum = 2;

Limit the height to a range of [0.5 3] m.

p(2).Minimum = 0.5;
p(2).Maximum = 3;

Sample the Design Space

Create a parameter space for the design variables. The parameter space
characterizes the allowable parameter values and combinations of parameter
values.

pSpace = sdo.ParameterSpace(p);

The parameter space uses default uniform distributions for the design
variables. The distribution lower and upper bounds are set to the design
variable minimum and maximum value respectively.

Use the sdo.sample function to generate samples from the parameter space.
You use the samples to evaluate the model and explore the design space.

rng('default') %For reproducibility
pSmpl = sdo.sample(pSpace,30);

Use the sdo.scatterPlot command to visualize the sampled parameter
space. The scatter plot shows the parameter distributions on the diagonal
subplots and pairwise parameter combinations on the off diagonal subplots.

figure, sdo.scatterPlot(pSmpl)

4-20

Design Exploration using Parameter Sampling (Code)

Specify Uncertain Variables

Select the feed concentration and feed temperature as uncertain variables.
You evaluate the design using different values of feed temperature and
concentration.

pUnc = sdo.getParameterFromModel('sdoCSTR',{'FeedCon0','FeedTemp0'});

Create a parameter space for the uncertain variables. Use normal
distributions for both variables. Specify the mean as the current parameter
value. Specify a variance of 5% of the mean for the feed concentration and
1% of the mean for the temperature.

uSpace = sdo.ParameterSpace(pUnc);
uSpace = setDistribution(uSpace,'FeedCon0',makedist('normal',pUnc(1).Value,
uSpace = setDistribution(uSpace,'FeedTemp0',makedist('normal',pUnc(2).Value

The feed concentration is inversely correlated with the feed temperature. Add
this information to the parameter space.

uSpace.RankCorrelation = [1 -0.6; -0.6 1];

The rank correlation matrix has a row and column for each parameter with
the (i,j) entry specifying the correlation between the i and j parameters.

Sample the parameter space. The scatter plot shows the correlation between
concentration and temperature.

uSmpl = sdo.sample(uSpace,60);
sdo.scatterPlot(uSmpl)

Ideally you want to evaluate the design for every combination of points in the
design and uncertain spaces, which implies 30*60 = 1800 simulations. Each
simulation takes around 0.5 sec. You can use parallel computing to speed
up the evaluation. For this example you instead only use the samples that

4-21

4 Sensitivity Analysis

have maximum & minimum concentration and temperature values, reducing
the evaluation time to around 1 min.

[~,iminC] = min(uSmpl.FeedCon0);
[~,imaxC] = max(uSmpl.FeedCon0);
[~,iminT] = min(uSmpl.FeedTemp0);
[~,imaxT] = max(uSmpl.FeedTemp0);
uSmpl = uSmpl(unique([iminC,imaxC,iminT,imaxT]) ,:)

uSmpl =

FeedCon0 FeedTemp0
________ _________

9.4555 303.58
11.175 288.13
11.293 290.73
8.9308 294.16

Create Evaluation Function

Create a function that evaluates the design for a given sample point in the
design space. The design is evaluated on how well it minimizes the variation
in residual concentration and mean coolant temperature.

Specify Design Requirements

Evaluating a point in the design space requires logging model signals. Logged
signals are used to evaluate the design requirements.

Log the following signals:

• CSTR concentration, available at the second output port of the
sdoCSTR/CSTR block

Conc = Simulink.SimulationData.SignalLoggingInfo;
Conc.BlockPath = 'sdoCSTR/CSTR';
Conc.OutputPortIndex = 2;

4-22

Design Exploration using Parameter Sampling (Code)

Conc.LoggingInfo.NameMode = 1;
Conc.LoggingInfo.LoggingName = 'Concentration';

• Coolant temperature, available at the first output of the
sdoCSTR/Controller block

Coolant = Simulink.SimulationData.SignalLoggingInfo;
Coolant.BlockPath = 'sdoCSTR/Controller';
Coolant.OutputPortIndex = 1;
Coolant.LoggingInfo.NameMode = 1;
Coolant.LoggingInfo.LoggingName = 'Coolant';

Create and configure a simulation test object to log the required signals.

simulator = sdo.SimulationTest('sdoCSTR');
simulator.LoggingInfo.Signals = [Conc,Coolant];

Evaluation Function

Use an anonymous function with one argument that calls the sdoCSTR_design
function.

evalDesign = @(p) sdoCSTR_design(p,simulator,pUnc,uSmpl);

The evalDesign function:

• Has one input argument that specifies the CSTR dimensions

• Returns the optimization objective value

The sdoCSTR_design function uses a for loop that iterates through the
sample values specified for the feed concentration and temperature. Within
the loop, the function:

• Simulates the model using the current design point, feed concentration,
and feed temperature values

• Calculates the residual concentration variation and coolant temperature
costs

4-23

4 Sensitivity Analysis

To view the objective function, type edit sdoCSTR_design.

type sdoCSTR_design

function design = sdoCSTR_design(p,simulator,pUnc,smplUnc)
%SDOCSTR_DESIGN
%
% The sdoCSTR_design function is used to evaluate a CSTR design.
%
% The |p| input argument is the vector of CSTR dimensions.
%
% The |simulator| input argument is a sdo.SimulinkTest object used to
% simulate the |sdoCSTR| model and log simulation signals.
%
% The |pUnc| input argument is a vector of parameters to specify the CSTR
% input feed concentration and feed temperature. The |smplUnc| argument is
% a table of different feed concentration and temperature values.
%
% The |design| return argument contains information about the design
% evaluation that can be used by the |sdo.optimize| function to optimize
% the design.
%
% see also sdo.optimize, sdoExampleCostFunction
%

% Copyright 2012-2013 The MathWorks, Inc.

%% Model Simulations and Evaluations
%
% For each value in |smplUnc|, configure and simulate the model. Use
% the logged concentration and coolant signals to compute the design cost.
%
costConc = 0;
costCoolant = 0;
for ct=1:size(smplUnc,1)

%Set the feed concentration and temperature values
pUnc(1).Value = smplUnc{ct,1};
pUnc(2).Value = smplUnc{ct,2};

4-24

Design Exploration using Parameter Sampling (Code)

%Simulate model
simulator.Parameters = [p; pUnc];
simulator = sim(simulator);
logName = get_param('sdoCSTR','SignalLoggingName');
simLog = get(simulator.LoggedData,logName);

%Compute Concentration cost based on the standard deviation of the
%concentration from a nominal value.
Sig = find(simLog,'Concentration');
costConc = costConc+10*std(Sig.Values-2);

%Compute coolant cost based on the mean deviation from room
%temperature.
Sig = find(simLog,'Coolant');
costCoolant = costCoolant+abs(mean(Sig.Values - 294))/30;

end

%% Return Total Cost
%
% Compute the total cost as a sum of the concentration and coolant costs.
%
design.F = costConc + costCoolant;

%%
% Add the individual cost terms to the return argument. These are not used
% by the optimizer, but included for convenience.
design.costConc = costConc;
design.costCoolant = costCoolant;
end

Evaluate

Use the sdo.evaluate command to evaluate the model at the sample design
points.

y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 30 samples.

4-25

4 Sensitivity Analysis

View the results of the evaluation using a scatter plot. The scatter plot shows
pairwise plots for each design variable (A,h) and design cost. The plot include
the total cost, F, as well as coolant and concentration costs, costCoolant
and costConc respectively.

sdo.scatterPlot(pSmpl,y);

The plot shows that larger cross-sectional areas result in lower total costs.
However it is difficult to tell how the height influences the total cost.

Create a mesh plot showing the total cost as a function of A and h.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
xR = linspace(min(pSmpl.A),max(pSmpl.A),60);
yR = linspace(min(pSmpl.h),max(pSmpl.h),60);
[xx,yy] = meshgrid(xR,yR);
zz = Ftotal(xx,yy);
mesh(xx,yy,zz)
view(56,30)
title('Total cost as function of A and h')
zlabel('Ftotal')
xlabel(p(1).Name), ylabel(p(2).Name);

The plot shows that high values of A and h result in lower costs. The best
design in the sampled space corresponds to the design with the lowest cost
value.

[~,idx] = min(y.F);
pBest = [y(idx,:), pSmpl(idx,:)]

pBest =

F costConc costCoolant A h
______ ________ ___________ ______ ______

4-26

Design Exploration using Parameter Sampling (Code)

2.1052 1.5757 0.52953 1.8483 2.1158

Refine the Design Space

The total cost surface plot shows that low cost designs are designs with A
in the range [1.5 2] and h in the range [2 3]. Modify the parameter space
distributions for A and h and resample the design space to focus on this region.

pSpace = setDistribution(pSpace,'A',makedist('uniform',1.5,2));
pSpace = setDistribution(pSpace,'h',makedist('uniform',2,3));
pSmpl = sdo.sample(pSpace,30);

Add the pBest found earlier to the new samples so that it is part of the
refined design space.

pSmpl = [pSmpl;pBest(:,4:5)];
sdo.scatterPlot(pSmpl)

Evaluate using Refined Design Space

y = sdo.evaluate(evalDesign,p,pSmpl);

Model evaluated at 31 samples.

Create a mesh plot for this section of the design space. The surface indicates
that better designs are near the A = 1.9, h = 2.1 point.

Ftotal = scatteredInterpolant(pSmpl.A,pSmpl.h,y.F);
xR = linspace(min(pSmpl.A),max(pSmpl.A),60);
yR = linspace(min(pSmpl.h),max(pSmpl.h),60);
[xx,yy] = meshgrid(xR,yR);
zz = Ftotal(xx,yy);
mesh(xx,yy,zz)
view(56,30)
title('Total cost as function of A and h')
zlabel('Ftotal')
xlabel(p(1).Name), ylabel(p(2).Name);

4-27

4 Sensitivity Analysis

Find the best design from the new design space and compare with the best
design point found earlier.

[~,idx] = min(y.F);
pBest = [pBest; [y(idx,:), pSmpl(idx,:)]]

pBest =

F costConc costCoolant A h
______ ________ ___________ ______ ______

2.1052 1.5757 0.52953 1.8483 2.1158
1.979 1.4838 0.49528 1.9695 2.1174

The best design in the refined design space is better than the design found
earlier. This indicates that there may be better designs in the same region
and warrants refining the design space further. Alternatively you can use the
best design point as an initial guess for optimization.

Related Examples

To learn how to optimize the CSTR design using the sdo.optimize command,
see "Design Optimization with Uncertain Variables (Code)".

To learn how to analyze the influence of design parameters on the design
using the sdo.analyze command, see "Sensitivity Analysis for Parameter
Estimation (Code)"

References

[1] Bequette, B.W. Process Dynamics: Modeling, Analysis and Simulation. 1st
ed. Upper Saddle River, NJ: Prentice Hall, 1998.

Close the model

bdclose('sdoCSTR')

4-28

Identify Key Parameters for Estimation (Code)

Identify Key Parameters for Estimation (Code)
This example shows how to use sensitivity analysis to narrow down the
number of parameters that you need to estimate to fit a model. This example
uses a model of the vestibulo-ocular reflex, which generates compensatory
eye movements.

Model Description

The vestibulo-ocular reflex (VOR) enables the eyes to move at the same speed
and in the opposite direction as the head, so that vision is not blurred when
the head moves during normal activity. For example, if the head turns in one
direction, the eyes turn in the opposite direction, with the same speed. This
happens even in the dark. In fact, the VOR is most easily characterized by
measurements in the dark, to ensure that eye movements are predominantly
driven by the VOR.

The file sdoVOR_Data.mat contains uniformly sampled data of stimulation
and eye movements. If the VOR were perfectly compensatory, then a plot
of eye movement data, when flipped vertically, would overlay exactly on
top of a plot of head motion data. Such a system would be described by a
gain of 1 and a phase of 180 degrees. However, when we plot the data in
the file sdoVOR_Data.mat, the eye movements are close, but not perfectly
compensatory.

load('sdoVOR_Data.mat'); % Column vectors: Time HeadData EyeData
figure
plot(Time, HeadData, ':b', Time, EyeData, '-g')
xlabel('Time (sec)')
ylabel('Angular Velocity (deg/sec)')
ylim([-110 110])
legend('Head Data', 'Eye Data')

The eye movement data does not perfectly overlay the head motion data,
and this can be modeled by several factors. Head rotation is sensed by
organs in the inner ears, known as semicircular canals. These detect head
motion and transmit signals about head motion to the brain, which sends
motor commands to the eye muscles, so that eye movements compensate

4-29

4 Sensitivity Analysis

for head motion. We would like to use this eye movement data to estimate
the parameters in the models for these various stages. The model we will
use is shown below. There are four parameters in the model: Delay, Gain,
Tc, and Tp.

model_name = 'sdoVOR';
open_system(model_name)

The Delay parameter models the fact that there is some delay in
communicating the signals from the inner ear to the brain and the eyes. This
delay is due to the time needed for chemical neurotransmitters to traverse the
synaptic clefts between nerve cells. Based on the number of synapses involved
in the vestibulo-ocular reflex, this delay is expected to be around 5 ms. For
estimation purposes, we will assume it is between 2 and 9 ms.

Delay = sdo.getParameterFromModel(model_name, 'Delay');
Delay.Value = 0.005; % seconds
Delay.Minimum = 0.002;
Delay.Maximum = 0.009;

The Gain parameter models the fact that the the eyes do not move quite as
much as the head does. We will use 0.8 as our initial guess, and assume it
is between 0.6 and 1.

Gain = sdo.getParameterFromModel(model_name, 'Gain');
Gain.Value = 0.8;
Gain.Minimum = 0.6;
Gain.Maximum = 1;

The Tc parameter models the dynamics associated with the semicircular
canals, as well as some additional neural processing. The canals are
high-pass filters, because after a subject has been put into rotational motion,
the neurally active membranes in the canals slowly relax back to resting
position, so the canals stop sensing motion. Thus in the plot above, after the
stimulation undergoes transition edges, the eye movements tend to depart
from the stimulation over time. Based on mechanical characteristics of the
canals, combined with additional neural processing which prolongs this

4-30

Identify Key Parameters for Estimation (Code)

time constant to improve the accuracy of the VOR, we will estimate the Tc
parameter to be 15 seconds, and assume it is between 10 and 30 seconds.

Tc = sdo.getParameterFromModel(model_name, 'Tc');
Tc.Value = 15;
Tc.Minimum = 10;
Tc.Maximum = 30;

Finally, the Tp parameter models the dynamics of the oculomotor plant,
i.e. the eye and the muscles and tissues attached to it. The plant can be
modeled by two poles, however it is believed that the pole with the larger time
constant is cancelled by precompensation in the brain, to enable the eye to
make quick movements. Thus in the plot, when the stimulation undergoes
transition edges, the eye movements follow with only a little delay. For the
Tp parameter, we will use 0.01 seconds as our initial guess, and assume it
is between 0.005 and 0.05 seconds.

Tp = sdo.getParameterFromModel(model_name, 'Tp');
Tp.Value = 0.01;
Tp.Minimum = 0.005;
Tp.Maximum = 0.05;

Collect these parameters into a vector.

v = [Delay Gain Tc Tp];

Compare Measured Data to Initial Simulated Output

Create an Experiment object. Specify HeadData as input.

Exp = sdo.Experiment(model_name);
Exp.InputData = timeseries(HeadData, Time);

Associate eye movement data with model output.

EyeMotion = Simulink.SimulationData.Signal;
EyeMotion.Name = 'EyeMotion';
EyeMotion.BlockPath = [model_name '/Oculomotor Plant'];
EyeMotion.PortType = 'outport';
EyeMotion.PortIndex = 1;
EyeMotion.Values = timeseries(EyeData, Time);

4-31

4 Sensitivity Analysis

Add EyeMotion to the experiment.

Exp.OutputData = EyeMotion;

Use the data’s timing characteristics in the model.

stop_time = Time(end);
set_param(gcs, 'StopTime', num2str(stop_time));
dt = Time(2) - Time(1);
set_param(gcs, 'FixedStep', num2str(dt))

Create a simulation scenario using the experiment, and obtain the simulated
output.

Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

Search for the model_residual signal in the logged simulation data.

SimLog = find(Simulator.LoggedData, ...
get_param(model_name, 'SignalLoggingName'));

EyeSignal = find(SimLog, 'EyeMotion');

The model output does not match the data very well, as shown by the residual,
which we can compute by calling the objective function.

estFcn = @(v) sdoVOR_Objective(v, Exp, 'Residuals');
Model_Error = estFcn(v);
plot(Time, EyeData, '-g', ...
EyeSignal.Values.Time, EyeSignal.Values.Data, '--c', ...
Time, Model_Error.F, '-r');

xlabel('Time (sec)');
ylabel('Angular Velocity (deg/sec)');
legend('Eye Data', 'Model', 'Residual');

The objective function used above is defined in the file "sdoVOR_Objective.m".

4-32

Identify Key Parameters for Estimation (Code)

type sdoVOR_Objective.m

function vals = sdoVOR_Objective(v, Exp, Method)
% Compare model output with data
%
% Inputs:
% v - vector of parameters and/or states
% Exp - Experiment object
% Method - 'SSE' for scalar output, 'Residuals' for vector of residua

% Requirement setup
req = sdo.requirements.SignalTracking;
req.Type = '==';
req.Method = Method;

% If Residuals requested, keep on same scale as signals, for plotting
switch Method
case 'Residuals'
req.Normalize = 'off';

end

% Simulate the model
Exp = setEstimatedValues(Exp, v); % use vector of parameters/states
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);

% Compare model output with data
SimLog = find(Simulator.LoggedData, ...
get_param(Exp.ModelName, 'SignalLoggingName'));

OutputModel = find(SimLog, 'EyeMotion');
Model_Error = evalRequirement(req, OutputModel.Values, Exp.OutputData.Value
vals.F = Model_Error;

Sensitivity Analysis

Create an object to sample the parameter space.

ps = sdo.ParameterSpace([Delay ; Gain ; Tc ; Tp]);

4-33

4 Sensitivity Analysis

Generate 100 samples from the parameter space.

rng('default'); % for reproducibility
x = sdo.sample(ps, 100);
sdo.scatterPlot(x);

The sampling above used default options, and these are reflected in the plots
above. Parameter values were selected at random from distributions that
were uniform over the range of each parameter. Consequently, the histogram
plots along the diagonal appear approximately uniform. If Statistics Toolbox
is available, a number of distributions may be used in addition to uniform and
normal, and sampling can be done in a Latin hypercube pattern.

The off-diagonal plots above show scatter plots between pairs of different
variables. Since we did not specify a RankCorrelation matrix in ps, the scatter
plots do not indicate correlations. However, if parameters were believed to be
correlated, this can be specified using the RankCorrelation property of ps.

For sensitivity analysis, it is simpler to use a scalar objective, so we will
specify the sum of squared errors, "SSE":

estFcn = @(v) sdoVOR_Objective(v, Exp, 'SSE');
y = sdo.evaluate(estFcn, ps, x);

Model evaluated at 100 samples.

Evaluation could also be sped up using parallel computing.

Obtain the standardized regression coefficients.

opts = sdo.AnalyzeOptions;
opts.Method = 'StandardizedRegression';
sensitivities = sdo.analyze(x, y, opts);

Other types of analysis include correlation and, if Statistics Toolbox is
available, partial correlation.

We can view the analysis results.

4-34

Identify Key Parameters for Estimation (Code)

disp(sensitivities)

F

Delay 0.01303
Gain -0.90873
Tc -0.044395
Tp 0.19919

For standardized regression, parameters that highly influence the model
output have sensitivity magnitudes close to 1. On the other hand, less
influential parameters have smaller sensitivity magnitudes. We see that this
objective function is sensitive to changes in the Gain and Tp parameters, but
much less sensitive to changes in the Delay and Tc parameters.

You can validate sensitivity analysis results by resampling and reevaluating
the objective function for the samples. You can also use engineering intuition
for a quick analysis. For example, in this model, the time constant Tc ranges
from 10 to 30 seconds. Even the minimum value of 10 seconds is large
compared to the 2-second duration for which the head motion stimulation is
held at constant velocity. Therefore, Tc is not expected to affect the output
greatly. However, even when this kind of intuition is not readily available
in other models, sensitivity analysis can help highlight which parameters
are influential.

Based on the results of sensitivity analysis, designate the Delay and Tc
parameters as fixed when optimizing. This reduction in the number of free
parameters speeds up optimization.

Delay.Free = false;
Tc.Free = false;

Optimization

We can use the minimum from sensitivity analysis as the initial guess for
optimization.

[fval, idx_min] = min(y.F);

4-35

4 Sensitivity Analysis

Delay.Value = x.Delay(idx_min);
Gain.Value = x.Gain(idx_min);
Tc.Value = x.Tc(idx_min);
Tp.Value = x.Tp(idx_min);
%
v = [Delay Gain Tc Tp];
opts = sdo.OptimizeOptions;
opts.Method = 'fmincon';

As was the case with model evaluations in sensitivity analysis, parallel
computing could be used to speed up the optimization.

vOpt = sdo.optimize(estFcn, v, opts);
disp(vOpt)

Optimization started 18-Jan-2014 17:22:30

max Step-size First-order
Iter F-count f(x) constraint optimality

0 5 13.4798 0
1 18 12.2052 0 0.129 305
2 30 11.1441 0 0.0648 781
3 41 10.0493 0 0.0843 289
4 46 9.23607 0 0.0758 227
5 51 8.76122 0 0.0183 10.1
6 56 8.75862 0 0.00184 0.476
7 57 8.75862 0 8.41e-05 0.476

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the selected value of the step size tolerance and constraints are
satisfied to within the selected value of the constraint tolerance.

(1,1) =

Name: 'Delay'
Value: 0.0038

Minimum: 0.0020
Maximum: 0.0090

4-36

Identify Key Parameters for Estimation (Code)

Free: 0
Scale: 0.0078
Info: [1x1 struct]

(1,2) =

Name: 'Gain'
Value: 0.9012

Minimum: 0.6000
Maximum: 1

Free: 1
Scale: 1
Info: [1x1 struct]

(1,3) =

Name: 'Tc'
Value: 16.6833

Minimum: 10
Maximum: 30

Free: 0
Scale: 16
Info: [1x1 struct]

(1,4) =

Name: 'Tp'
Value: 0.0157

Minimum: 0.0050
Maximum: 0.0500

Free: 1
Scale: 0.0156
Info: [1x1 struct]

1x4 param.Continuous

4-37

4 Sensitivity Analysis

Visualizing Result of Optimization

Obtain the model response after estimation. Search for the model_residual
signal in the logged simulation data.

Exp = setEstimatedValues(Exp, vOpt);
Simulator = createSimulator(Exp);
Simulator = sim(Simulator);
SimLog = find(Simulator.LoggedData, ...
get_param(model_name, 'SignalLoggingName'));

EyeSignal = find(SimLog, 'EyeMotion');

Comparing the measured eye data with the optimized model response shows
that the residuals are much smaller.

estFcn = @(v) sdoVOR_Objective(v, Exp, 'Residuals');
Model_Error = estFcn(vOpt);
plot(Time, EyeData, '-g', ...
EyeSignal.Values.Time, EyeSignal.Values.Data, '--c', ...
Time, Model_Error.F, '-r');

xlabel('Time (sec)');
ylabel('Angular Velocity (deg/sec)');
legend('Eye Data', 'Model', 'Residual');

Close the model

bdclose(model_name)

4-38

5

Optimization-Based Control
Design

• “Overview of Optimization-Based Compensator Design” on page 5-2

• “Time-Domain Design Requirements in Simulink” on page 5-4

• “Frequency-Domain Design Requirements in Simulink” on page 5-17

• “Time- and Frequency-Domain Requirements in SISO Design Tool” on
page 5-39

• “Time-Domain Simulations in SISO Design Tool” on page 5-44

• “How to Design Optimization-Based Controllers for LTI Systems” on page
5-45

• “Optimize LTI System to Meet Frequency-Domain Requirements” on page
5-47

• “Designing Linear Controllers for Simulink Models” on page 5-68

5 Optimization-Based Control Design

Overview of Optimization-Based Compensator Design
You can design optimization-based controllers for Simulink models to meet
time and frequency-domain design requirements, as described in “Design
Optimization to Meet Time- and Frequency-Domain Requirements (GUI)” on
page 3-100.

If you have Control System Toolbox software installed, you can also design
and optimize control systems by tuning controller elements or parameters
within a SISO Design Task in the Control and Estimation Tools Manager.
You can tune elements or parameters such as poles, zeros, and gains within
any controller in the system and optimize the open and closed loop responses
to meet time- and frequency-domain requirements.

Optimize the responses of systems in the SISO Design Task to meet both
time- and frequency-domain performance requirements by graphically
constraining signals:

• Add frequency-domain design requirements to plots such as root-locus,
Nichols, and Bode in the SISO Design Task graphical tuning editor called
SISO Design Tool.

• Add time-domain design requirements to plots such as step or impulse
response (when displayed within the LTI Viewer as part of a SISO Design
Task).

You can use optimization methods in a SISO Design Task in the Control and
Estimation Tools Manager to tune both command-line LTI models as well
as Simulink models:

• Create an LTI model using the Control System Toolbox command-line
functions and use the sisotool function to create a SISO Design Task
for the model. For an example, see “Optimize LTI System to Meet
Frequency-Domain Requirements” on page 5-47.

• Use a Simulink Compensator Design task (from Simulink Control
Design software) to automatically analyze the model and then create a
SISO Design Task for a linearized version of the model. You can then
use the optimization techniques in the SISO Design Task to tune the
response of the linearized Simulink model. For an example, see “Design
Optimization-Based PID Controller for Linearized Simulink Model (GUI)”.

5-2

Overview of Optimization-Based Compensator Design

Note When using response optimization within a SISO Design Task you
cannot add uncertainty to system parameters.

When using a SISO Design Task, Simulink Design Optimization software
automatically sets the model’s simulation start and stop time and you cannot
directly change them. By default, the simulation starts at 0 and continues
until the SISO Design Task determines that the dynamics of the model have
settled out. In addition, when the design requirements extend beyond this
point, the simulation continues to the extent of the design requirements.
Although you cannot directly adjust the start or stop time of the simulation,
you can adjust the design requirements to extend further in time and thus
force the simulation to continue to a certain point.

5-3

5 Optimization-Based Control Design

Time-Domain Design Requirements in Simulink

In this section...

“Specify Piecewise-Linear Lower and Upper Bounds” on page 5-4

“Specify Step Response Characteristics” on page 5-32

“Track Reference Signals” on page 5-9

“Specify Custom Requirements” on page 5-35

“Edit Design Requirements” on page 5-14

Specify Piecewise-Linear Lower and Upper Bounds
To specify upper and lower bounds on a signal:

1 In the Design Optimization tool, select Signal Bound in the New
drop-down list. A window opens where you specify upper or lower bounds
on a signal.

2 Specify a requirement name in the Name box.

3 Select the requirement type using the Type list.

4 Specify the edge start and end times and corresponding amplitude in the
Time (s) and Amplitude columns.

5 Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Signals to Bound area, select a logged signal to apply the
requirement to.

If you have already selected signals, as described in “Specify Signals to Log”
on page 3-13, they appear in the list. Select the corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

5-4

Time-Domain Design Requirements in Simulink®

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

7 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can add a Check Custom Bounds block to your model to
specify piecewise-linear bounds.

5-5

5 Optimization-Based Control Design

Specify Step Response Characteristics
To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of
your model.

In the Design Optimization Tool, click New. To apply this requirement to
a signal, select the Step Response Envelope entry in the New Time
Domain Requirement section of the New list. To apply this requirement
to a linearization of your model, select the Step Response Envelope
entry in the New Frequency Domain Requirement section of the New
list. The latter option requires Simulink Control Design software.

A window opens where you specify the step response requirements on
a signal, or system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:

&
�
��
���

��

'���

(�
	���	���

)����'���

*�)���

*�+,�������
*�������
�

������
��'���

*�%
��������
-
���	���	���

5-6

Time-Domain Design Requirements in Simulink®

• Initial value: Input level before the step occurs

• Step time: Time at which the step takes place

• Final value: Input level after the step occurs

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined
as the final step value plus or minus the specified percentage of the
final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can
undershoot the initial value. This amount is specified as a percentage
of the step’s range. The step’s range is the difference between the final
and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of
your Simulink model (requires Simulink Control Design software).

• Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which
you will apply the requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

5-7

5 Optimization-Based Control Design

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

5-8

Time-Domain Design Requirements in Simulink®

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create
Linearization I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to
specify step response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Track Reference Signals
Use reference tracking to force a model signal to match a desired signal.

To track a reference signal:

1 In the Design Optimization tool, select Signal Tracking in the New
drop-down list. A window opens where you specify the reference signal
to track.

2 Specify a requirement name in the Name box.

3 Define the reference signal by entering vectors, or variables from the
workspace, in the Time vector and Amplitude fields.

Click Update reference signal data to use the new amplitude and time
vector as the reference signal.

4 Specify how the optimization solver minimizes the error between the
reference and model signals using the Tracking Method list:

5-9

5 Optimization-Based Control Design

• SSE — Reduces the sum of squared errors

• SAE — Reduces the sum of absolute errors

5 In the Specify Signal to Track Reference Signal area, select a logged
signal to apply the requirement to.

If you already selected a signal to log, as described in “Specify Signals
to Log” on page 3-13, they appear in the list. Select the corresponding
check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

5-10

Time-Domain Design Requirements in Simulink®

e Select the check-box corresponding to the signal and click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the signal bound also
appears in the Design Optimization tool window.

Note When tracking a reference signal, the software ignores the maximally
feasible solution option. For more information on this option, see “Selecting
Optimization Termination Options” on page 3-79.

Alternatively, you can use the Check Against Reference block to specify
a reference signal to track.

See Also

“Design Optimization to Track Reference Signal (GUI)”

Specify Custom Requirements
To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New
list. A window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in
the Function box. The field must be specified as a function handle using

@. The function must be on the MATLAB path. Click to review
or edit the function.

If the function does not exist, clicking opens a template MATLAB
file. Use this file to implement the custom requirement. The default
function name is myCustomRequirement.

5-11

5 Optimization-Based Control Design

5 (Optional) If you want to prevent the solver from considering specific
parameter combinations, select the Error if constraint is violated check
box. Use this option for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with
this option selected first.

• If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

• If the constraint is not violated, the solver evaluates the remaining
requirements for the current iterate. If any of the remaining
requirements bound signals or systems, then the solver simulates the
model .

For more information, see “Skip Model Simulation Based on Parameter
Constraint Violation (GUI)” on page 3-152.

Note If you select this check box, then do not specify signals or systems to
bound. If you do specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your
Simulink model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the
signal and linearization I/O selection area.

• Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check box.

If you have not selected a signal to log:

a Click . A window opens where you specify the logged signal.

5-12

Time-Domain Design Requirements in Simulink®

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

5-13

5 Optimization-Based Control Design

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box. For more
information on using this dialog box, see “Create Linearization I/O
Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122

Edit Design Requirements
The Edit Design Requirement dialog box allows you to exactly position
constraint segments and to edit other properties of these constraints. The
dialog box has two main components:

• An upper panel to specify the constraint you are editing

• A lower panel to edit the constraint parameters

The upper panel of the Edit Design Requirement dialog box resembles the
image in the following figure.

In the context of the SISO Tool in Control System Toolbox software, Design
requirement refers to both the particular editor within the SISO Tool
that contains the requirement and the particular requirement within that

5-14

Time-Domain Design Requirements in Simulink®

editor. To edit other constraints within the SISO Tool, select another design
requirement from the drop-down menu.

Edit Design Requirement Dialog Box Parameters
The particular parameters shown within the lower panel of the Edit Design
Requirement dialog box depend on the type of constraint/requirement. In
some cases, the lower panel contains a grid with one row for each segment and
one column for each constraint parameter. The following table summarizes
the various constraint parameters.

Edit Design Requirement Dialog Box Parameters

Parameter Found in Description

Time Upper and lower time
response bounds on step
and impulse response plots

Defines the time range of a segment
within a constraint/requirement.

Amplitude Upper and lower time
response bounds on step
and impulse response plots

Defines the beginning and ending
amplitude of a constraint segment.

Slope (1/s) Upper and lower time
response bounds

Defines the slope, in 1/s, of a
constraint segment. It is an
alternative method of specifying the
magnitude values. Entering a new
Slope value changes any previously
defined magnitude values.

Final value Step response bounds Defines the input level after the step
occurs.

Rise time Step response bounds Defines a constraint segment for a
particular rise time.

% Rise Step response bounds The percentage of the step’s range
used to describe the rise time.

Settling time Step response bounds Defines a constraint segment for a
particular settling time.

5-15

5 Optimization-Based Control Design

Edit Design Requirement Dialog Box Parameters (Continued)

Parameter Found in Description

% Settling Step response bounds The percentage of the final value that
defines the settling region used to
describe the settling time.

% Overshoot Step response bounds

% Undershoot Step response bounds Defines the constraint segments for a
particular percent undershoot.

5-16

Frequency-Domain Design Requirements in Simulink®

Frequency-Domain Design Requirements in Simulink

In this section...

“Specify Lower Bounds on Gain and Phase Margin” on page 5-17

“Specify Piecewise-Linear Lower and Upper Bounds on Frequency
Response” on page 5-19

“Specify Bound on Closed-Loop Peak Gain” on page 5-21

“Specify Lower Bound on Damping Ratio” on page 5-23

“Specify Upper and Lower Bounds on Natural Frequency” on page 5-25

“Specify Upper Bound on Approximate Settling Time” on page 5-27

“Specify Piecewise-Linear Upper and Lower Bounds on Singular Values”
on page 5-29

“Specify Step Response Characteristics” on page 5-32

“Specify Custom Requirements” on page 5-35

Specify Lower Bounds on Gain and Phase Margin
To specify lower bounds on the gain and phase margin of a linear system:

1 In the Design Optimization tool, select Gain and Phase Margin in the
New list. A window opens where you specify lower bounds on the gain and
phase margin of your linear system.

2 Specify a requirement name in Name.

3 Specify bounds on the gain margin or phase margin, or both.

5-17

5 Optimization-Based Control Design

• Gain margin— Amount of gain increase or decrease required to make
the loop gain unity at the frequency where the phase angle is –180°.

• Phase margin — Amount of phase increase or decrease required to
make the phase angle –180° when the loop gain is 1.0

To specify a lower bound on the gain margin or phase margin, or both,
select the corresponding check box and enter the lower bound value.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

5-18

Frequency-Domain Design Requirements in Simulink®

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Gain and Phase Margins block to specify
bounds on the gain and phase margin. (Requires Simulink Control Design.)

Specify Piecewise-Linear Lower and Upper Bounds
on Frequency Response
To specify upper or lower bounds on the magnitude of a system response:

1 In the Design Optimization tool, select Bode Magnitude in the New
list. A window opens where you specify the lower or upper bounds on the
magnitude of the system response.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the edge start and end frequencies and corresponding magnitude in
the Frequency and Magnitude columns.

5-19

5 Optimization-Based Control Design

5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool window.
A graphical display of the requirement also appears in the Design
Optimization tool window.

5-20

Frequency-Domain Design Requirements in Simulink®

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Bode Characteristics block to specify
bounds on the magnitude of the system response. (Requires Simulink Control
Design.)

Specify Bound on Closed-Loop Peak Gain
To specify an upper bound on the closed-loop peak response of a system:

1 In the Design Optimization tool, select Closed-Loop Peak Gain in the
New list. A window opens where you specify an upper bound on the
closed-loop peak gain of the system.

2 Specify a requirement name in the Name box.

5-21

5 Optimization-Based Control Design

3 Specify the upper bound on the closed-loop peak gain in the Closed-Loop
peak gain box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool window.
A graphical display of the requirement also appears in the Design
Optimization tool window.

5-22

Frequency-Domain Design Requirements in Simulink®

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Nichols Characteristics block to specify
bounds on the magnitude of the system response. (Requires Simulink Control
Design.)

Specify Lower Bound on Damping Ratio
To specify a lower bound on the damping ratio of the system:

1 In the Design Optimization tool, select Damping Ratio in the New list. A
window opens where you specify an upper bound on the damping ratio of
the system.

5-23

5 Optimization-Based Control Design

2 Specify a requirement name in the Name box.

3 Specify the lower bound on the damping ratio in the Damping ratio box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

5-24

Frequency-Domain Design Requirements in Simulink®

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
a bound on the damping ratio. (Requires Simulink Control Design.)

Specify Upper and Lower Bounds on Natural
Frequency
To specify a bound on the natural frequency of the system:

1 In the Design Optimization tool, select Natural Frequency in the New
list. A window opens where you specify a bound on the natural frequency of
the system.

5-25

5 Optimization-Based Control Design

2 Specify a requirement name in the Name box.

3 Specify a lower or upper bound on the natural frequency in the Natural
frequency box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

5-26

Frequency-Domain Design Requirements in Simulink®

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
a bound on the natural frequency. (Requires Simulink Control Design.)

Specify Upper Bound on Approximate Settling Time
To specify an upper bound on the approximate settling time of the system:

1 In the Design Optimization tool, select Settling Time in the New list.
A window opens where you specify an upper bound on the approximate
settling time of the system.

2 Specify a requirement name in the Name box.

5-27

5 Optimization-Based Control Design

3 Specify the upper bound on the approximate settling time in the Settling
time box.

4 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

5-28

Frequency-Domain Design Requirements in Simulink®

6 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Pole-Zero Characteristics block to specify
the approximate settling time. (Requires Simulink Control Design.)

Specify Piecewise-Linear Upper and Lower Bounds
on Singular Values
To specify piecewise-linear upper and lower bounds on the singular values
of a system:

5-29

5 Optimization-Based Control Design

1 In the Design Optimization tool, select Singular Values in the New
list. A window opens where you specify the lower or upper bounds on the
singular values of the system.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the edge start and end frequencies and corresponding magnitude in
the Frequency and Magnitude columns, respectively.

5 Insert or delete bound edges.

Click to specify additional bound edges.

Select a row and click to delete a bound edge.

6 In the Select Systems to Bound section, select the linear systems to
which this requirement applies.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using the
Snapshot Times box. For multiple simulation snapshot times, specify a
vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

If you have not created a linearization input/output set, click to
open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create Linearization
I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5-30

Frequency-Domain Design Requirements in Simulink®

7 Click OK.

A new variable with the specified name appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

8 (Optional) In the graphical display, you can:

• “Move Constraints Graphically” on page 3-22

• “Position Constraints Exactly” on page 3-23

Alternatively, you can use the Check Singular Value Characteristics block to
specify bounds on the singular value. (Requires Simulink Control Design.)

5-31

5 Optimization-Based Control Design

Specify Step Response Characteristics
To specify step response characteristics:

1 You can apply this requirement to either a signal or a linearization of
your model.

In the Design Optimization Tool, click New. To apply this requirement to
a signal, select the Step Response Envelope entry in the New Time
Domain Requirement section of the New list. To apply this requirement
to a linearization of your model, select the Step Response Envelope
entry in the New Frequency Domain Requirement section of the New
list. The latter option requires Simulink Control Design software.

A window opens where you specify the step response requirements on
a signal, or system.

2 Specify a requirement name in the Name box.

3 Specify the step response characteristics:

&
�
��
���

��

'���

(�
	���	���

)����'���

*�)���

*�+,�������
*�������
�

������
��'���

*�%
��������
-
���	���	���

5-32

Frequency-Domain Design Requirements in Simulink®

• Initial value: Input level before the step occurs

• Step time: Time at which the step takes place

• Final value: Input level after the step occurs

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined
as the final step value plus or minus the specified percentage of the
final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can
undershoot the initial value. This amount is specified as a percentage
of the step’s range. The step’s range is the difference between the final
and initial values.

4 Specify the signals or systems to be bound.

You can apply this requirement to a model signal or to a linearization of
your Simulink model (requires Simulink Control Design software).

• Apply this requirement to a model signal:

In the Select Signals to Bound area, select a logged signal to which
you will apply the requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check-box.

If you haven’t selected a signal to log:

a Click . A window opens where you specify the logged signal.

5-33

5 Optimization-Based Control Design

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

5-34

Frequency-Domain Design Requirements in Simulink®

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box.

For more information on using this dialog box, see “Create
Linearization I/O Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

5 Click OK.

A variable with the specified requirement name appears in the Design
Optimization Workspace. A graphical display of the requirement also
appears in the Design Optimization tool window.

Alternatively, you can use the Check Step Response Characteristics block to
specify step response bounds for a signal.

See Also

“Design Optimization to Meet Step Response Requirements (GUI)”

Specify Custom Requirements
To specify custom requirements, such as minimizing system energy:

1 In the Design Optimization tool, select Custom Requirement in the New
list. A window opens where you specify the custom requirement.

2 Specify a requirement name in the Name box.

3 Specify the requirement type using the Type list.

4 Specify the name of the function that contains the custom requirement in
the Function box. The field must be specified as a function handle using

@. The function must be on the MATLAB path. Click to review
or edit the function.

If the function does not exist, clicking opens a template MATLAB
file. Use this file to implement the custom requirement. The default
function name is myCustomRequirement.

5-35

5 Optimization-Based Control Design

5 (Optional) If you want to prevent the solver from considering specific
parameter combinations, select the Error if constraint is violated check
box. Use this option for parameter-only constraints.

During an optimization iteration, the solver evaluates requirements with
this option selected first.

• If the constraint is violated, the solver skips evaluating any remaining
requirements and proceeds to the next iterate.

• If the constraint is not violated, the solver evaluates the remaining
requirements for the current iterate. If any of the remaining
requirements bound signals or systems, then the solver simulates the
model .

For more information, see “Skip Model Simulation Based on Parameter
Constraint Violation (GUI)” on page 3-152.

Note If you select this check box, then do not specify signals or systems to
bound. If you do specify signals or systems, then this check box is ignored.

6 (Optional) Specify the signal or system, or both, to be bound.

You can apply this requirement to model signals, or a linearization of your
Simulink model (requires Simulink Control Design software), or both.

Click Select Signals and Systems to Bound (Optional) to view the
signal and linearization I/O selection area.

• Apply this requirement to a model signal:

In the Signal area, select a logged signal to which you will apply the
requirement.

If you have already selected a signal to log, as described in “Specify
Signals to Log” on page 3-13, it appears in the list. Select the
corresponding check box.

If you have not selected a signal to log:

a Click . A window opens where you specify the logged signal.

5-36

Frequency-Domain Design Requirements in Simulink®

b In the Simulink model window, click the signal to which you want to
add a requirement.

The window updates and displays the name of the block and the port
number where the selected signal is located.

c Select the signal and click to add it to the signal set.

d In the Signal set box, enter a name for the selected signal set.

Click OK. A new variable, with the specified name, appears in the
Design Optimization Workspace of the Design Optimization tool
window.

• Apply this requirement to a linear system.

Linear systems are defined by snapshot times at which the model is
linearized and sets of linearization I/O points defining the system inputs
and outputs.

a Specify the simulation time at which the model is linearized using
the Snapshot Times box. For multiple simulation snapshot times,
specify a vector.

b Select the linearization input/output set from the Linearization I/O
area.

If you have already created a linearization input/output set, it will
appear in the list. Select the corresponding check box.

5-37

5 Optimization-Based Control Design

If you have not created a linearization input/output set, click
to open the Create linearization I/O set dialog box. For more
information on using this dialog box, see “Create Linearization I/O
Sets” on page 3-82.

For more information on linearization, see “What Is Linearization?”.

7 Click OK.

A new variable, with the specified name, appears in the Design
Optimization Workspace of the Design Optimization tool. A graphical
display of the requirement also appears in the Design Optimization tool
window.

See Also

• “Design Optimization to Meet a Custom Objective (GUI)” on page 3-105

• “Design Optimization to Meet Custom Signal Requirements (GUI)” on
page 3-122

5-38

Time- and Frequency-Domain Requirements in SISO Design Tool

Time- and Frequency-Domain Requirements in SISO
Design Tool

In this section...

“Root Locus Diagrams” on page 5-39

“Open-Loop and Prefilter Bode Diagrams” on page 5-41

“Open-Loop Nichols Plots” on page 5-41

“Step/Impulse Response Plots” on page 5-42

Root Locus Diagrams

• “Settling Time” on page 5-39

• “Percent Overshoot” on page 5-39

• “Damping Ratio” on page 5-40

• “Natural Frequency” on page 5-40

• “Region Constraint” on page 5-41

Settling Time
If you specify a settling time in the continuous-time root locus, a vertical line
appears on the root locus plot at the pole locations associated with the value
provided (using a first-order approximation). In the discrete-time case, the
constraint is a curved line.

It is required that Re{ } . /pole Tsettling< −4 6 for continuous systems and

log(()) / . /abs pole T Tdiscrete settling< −4 6 for discrete systems. This is an
approximation of the settling time based on second-order dominant systems.

Percent Overshoot
Specifying percent overshoot in the continuous-time root locus causes two
rays, starting at the root locus origin, to appear. These rays are the locus of
poles associated with the percent value (using a second-order approximation).

5-39

5 Optimization-Based Control Design

In the discrete-time case, the constraint appears as two curves originating at
(1,0) and meeting on the real axis in the left-hand plane.

The percent overshoot p.o constraint can be expressed in terms of the damping
ratio, as in this equation:

p o e. . /= − −100 1 2πζ ζ

where ζ is the damping ratio.

Damping Ratio
Specifying a damping ratio in the continuous-time root locus causes two rays,
starting at the root locus origin, to appear. These rays are the locus of poles
associated with the damping ratio. In the discrete-time case, the constraint
appears as curved lines originating at (1,0) and meeting on the real axis in
the left-hand plane.

The damping ratio defines a requirement on −Re{ } / ()pole poleabs for
continuous systems and on

r pSys
t pSys

c r r t

=
=

= − +

abs
angle

()
()

log() / (log())2 2

for discrete systems.

Natural Frequency
If you specify a natural frequency, a semicircle centered around the root locus
origin appears. The radius equals the natural frequency.

The natural frequency defines a requirement on abs(pole) for continuous
systems and on

5-40

Time- and Frequency-Domain Requirements in SISO Design Tool

r pSys
t pSys

c r t Tsmodel

=
=

= +

abs
angle

()
()

(log()) /2 2

for discrete systems.

Region Constraint
Specifies an exclusion region in the complex plane, causing a line to appear
between the two specified points with a shaded region below the line. The
poles must not lie in the shaded region.

Open-Loop and Prefilter Bode Diagrams

• “Gain and Phase Margins” on page 5-41

• “Upper Gain Limit” on page 5-41

• “Lower Gain Limit” on page 5-41

Gain and Phase Margins
Specify a minimum phase and or a minimum gain margin.

Upper Gain Limit
You can specify an upper gain limit, which appears as a straight line on the
Bode magnitude curve. You must select frequency limits, the upper gain limit
in decibels, and the slope in dB/decade.

Lower Gain Limit
Specify the lower gain limit in the same fashion as the upper gain limit.

Open-Loop Nichols Plots

• “Phase Margin” on page 5-42

• “Gain Margin” on page 5-42

5-41

5 Optimization-Based Control Design

• “Closed-Loop Peak Gain” on page 5-42

• “Gain-Phase Requirement” on page 5-42

Phase Margin
Specify a minimum phase amount.

While displayed graphically at only one location around a multiple of -180
degrees, this requirement applies to phase margin regardless of actual phase
(i.e., it is interpreted for all multiples of -180).

Gain Margin
Specify a minimum gain margin.

While displayed graphically at only one location around a multiple of -180
degrees, this requirement applies to gain margin regardless of actual phase
(i.e., it is interpreted for all multiples of -180).

Closed-Loop Peak Gain
Specify a peak closed-loop gain at a given location. The specified value can be
positive or negative in dB. The constraint follows the curves of the Nichols plot
grid, so it is recommended that you have the grid on when using this feature.

While displayed graphically at only one location around a multiple of -180
degrees, this requirement applies to gain margin regardless of actual phase
(i.e., it is interpreted for all multiples of -180).

Gain-Phase Requirement
Specifies an exclusion region for the response on the Nichols plot. The
response must not pass through the shaded region.

This only applies to the region (phase and gain) drawn.

Step/Impulse Response Plots

• “Upper Time Response Bound” on page 5-43

5-42

Time- and Frequency-Domain Requirements in SISO Design Tool

• “Lower Time Response Bound” on page 5-43

Upper Time Response Bound
You can specify an upper time response bound.

Lower Time Response Bound
You can specify a lower time response bound.

Related
Examples

• “How to Design Optimization-Based Controllers for LTI Systems” on page
5-45
• “Optimize LTI System to Meet Frequency-Domain Requirements” on page
5-47
• “Design Optimization-Based PID Controller for Linearized Simulink Model
(GUI)”

5-43

5 Optimization-Based Control Design

Time-Domain Simulations in SISO Design Tool
When using a SISO Design Task, Simulink Design Optimization software
automatically sets the model’s simulation start and stop time and you cannot
directly change them. By default, the simulation starts at 0 and continues
until the SISO Design Task determines that the dynamics of the model have
settled out. In addition, when the design requirements extend beyond this
point, the simulation continues to the extent of the design requirements.
Although you cannot directly adjust the start or stop time of the simulation,
you can adjust the design requirements to extend further in time and thus
force the simulation to continue to a certain point.

5-44

How to Design Optimization-Based Controllers for LTI Systems

How to Design Optimization-Based Controllers for LTI
Systems

To design optimization-based linear controller for an LTI model:

1 Create and import a linear model into a SISO Design Task. You can create
an LTI model at the MATLAB command line, as described in “Creating
an LTI Plant Model” on page 5-48.

2 Create a SISO Design Task with design and analysis plots, as described in
“Creating Design and Analysis Plots” on page 5-49.

To learn more about SISO Design Tool, see “Using the SISO Design Task in
the Controls & Estimation Tools Manager” in the Control System Toolbox
documentation.

3 Under Automated Tuning select Optimization based tuning as the
Design Method and then click the Optimize Compensators button to
create a Response Optimization task within the Control and Estimation
Tools Manager. See “Creating a Response Optimization Task” on page
5-52 for more information.

4 Within the Response Optimization node, select the Compensators
pane to select and configure the compensator elements you want to tune
during the response optimization. See “Selecting Tunable Compensator
Elements” on page 5-54 for more information.

Note Compensator elements or parameters cannot have uncertainty when
used with frequency-domain based response optimization.

5 Under Design requirements in the Response Optimization node,
select the design requirements you want the system to satisfy. See “Adding
Design Requirements” on page 5-55 for more information.

6 Click the Start Optimization button within the Response Optimization
node. The optimization progress results appear under Optimization. The
Compensators pane contains the new, optimized compensator element

5-45

5 Optimization-Based Control Design

values. See “Optimizing the System’s Response” on page 5-63 for more
information.

5-46

Optimize LTI System to Meet Frequency-Domain Requirements

Optimize LTI System to Meet Frequency-Domain
Requirements

In this section...

“Introduction” on page 5-47

“Design Requirements” on page 5-47

“Creating an LTI Plant Model” on page 5-48

“Creating Design and Analysis Plots” on page 5-49

“Creating a Response Optimization Task” on page 5-52

“Selecting Tunable Compensator Elements” on page 5-54

“Adding Design Requirements” on page 5-55

“Optimizing the System’s Response” on page 5-63

“Creating and Displaying the Closed-Loop System” on page 5-66

Introduction
When you have Control System Toolbox software, you can place Simulink
Design Optimization design requirements or constraints on plots in the SISO
Design Tool graphical tuning editor and analysis plots that are part of a SISO
Design Task. This allows you to include design requirements for response
optimization in the frequency-domain in addition to the time-domain.
This topic guides you through an example using frequency-domain design
requirements to optimize the response of a system in the SISO Design Task.

You can specify frequency-domain design requirements to optimize response
signals for any model that you can design within a SISO Design Task:

• Command-line LTI models created with the Control System Toolbox
commands

• Simulink models that have been linearized using Simulink Control Design
software

Design Requirements
In this example, you use a linearized version of the following Simulink model.

5-47

5 Optimization-Based Control Design

You use optimization methods to design a compensator so that the closed loop
system meets the following design specifications when you excite the system
with a unit step input:

• A maximum 30-second settling time

• A maximum 10% overshoot

• A maximum 10-second rise time

• A limit of ±0.7 on the actuator signal

Creating an LTI Plant Model
In the srotut1 model, the plant model is composed of a gain, a limited
integrator, a transfer function, and a transport delay.

You want to design the compensator for the open loop transfer function of the
linearized srotut1 model. The linearized srotut1 plant model is composed
of the gain, an unlimited integrator, the transfer function, and a Padé
approximation to the transport delay.

To create an open loop transfer function based on the linearized srotut1
model, enter the following commands:

w0 = 1;
zeta = 1;
Kint = 0.5;
Tdelay = 1;
[delayNum,delayDen] = pade(Tdelay,1);
integrator = tf(Kint,[1 0]);
transfer_fcn = tf(w0^2,[1 2*w0*zeta w0^2]);
delay_block = tf(delayNum,delayDen);
open_loopTF = integrator*transfer_fcn*delay_block;

5-48

Optimize LTI System to Meet Frequency-Domain Requirements

If the plant model is an array of LTI models, the controller is designed for a
nominal model only but you can analyze the control design for the remaining
models in the array. For more information, see “Control Design Analysis of
Multiple Models” in the Control System Toolbox documentation.

Tip You can directly linearize the Simulink model using Simulink Control
Design software.

Creating Design and Analysis Plots
This example uses a root locus diagram to design the response of the open loop
transfer function, open_loopTF. To create a SISO Design Task, containing a
root-locus plot for the open loop transfer function, use the following command:

sisotool('rlocus',open_loopTF)

A SISO Design Task is created within the Control and Estimation Tools
Manager, as shown in the following figure.

5-49

5 Optimization-Based Control Design

The Control and Estimation Tools Manager is a graphical environment
for managing and performing tasks such as designing SISO systems. The
SISO Design Task node contains five panels that perform actions related to
designing SISO control systems. For more information, see “Using the SISO
Design Task in the Controls & Estimation Tools Manager” in Control System
Toolbox documentation.

The Architecture pane, within the SISO Design Task node, lets you choose
the architecture for the control system you are designing. This example uses
the default architecture. In this system, the plant model, G, is the open loop
transfer function open_loopTF, the prefilter, F, and the sensor, H, are set to
1, and the compensator, C, is the compensator that will be designed using
response optimization methods.

The SISO Design Task also contains a root locus diagram in the SISO Design
Tool graphical tuning editor.

5-50

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/

Optimize LTI System to Meet Frequency-Domain Requirements

In addition to the root-locus diagram, it is helpful to visualize the response of
the system with a step response plot. To add a step response:

1 Select the Analysis Plots pane with the SISO Design Task node of the
Control and Estimation Tool Manager.

2 Select Step for the Plot Type of Plot 1.

3 Under Contents of Plots, select the check box in column 1 for the response
Closed Loop r to y.

5-51

5 Optimization-Based Control Design

A step response plot appears in an LTI Viewer. The plot shows the response
of the closed loop system from r (input to the prefilter, F) to y (output of the
plant model, G):

Creating a Response Optimization Task
There are several possible methods for designing a SISO system; this example
uses an automated approach involving response optimization methods. After
creating the design and analysis plots as discussed in “Creating Design and
Analysis Plots” on page 5-49, you are ready to start a response optimization
task to design the compensator.

To create a response optimization task:

1 Select the Automated Tuning pane within the SISO Design Task node
in the Control and Estimation Tools Manager.

5-52

Optimize LTI System to Meet Frequency-Domain Requirements

2 In the Automated Tuning pane, select Optimization based tuning as
the Design Method.

3 Click the Optimize Compensators button to create the Response
Optimization node under the SISO Design Task node in the tree
browser in the left pane of the Control and Estimation Tools Manager.

The Response Optimization node contains four panes as shown in the
next figure.

With the exception of the first pane, each corresponds to a step in the response
optimization process:

• Overview: A schematic diagram of the response optimization process.

5-53

5 Optimization-Based Control Design

• Compensators: Select and configure the compensator elements that you
want to tune. See “Selecting Tunable Compensator Elements” on page 5-54.

• Design requirements: Select the design requirements that you want
the system to meet after tuning the compensator elements. See “Adding
Design Requirements” on page 5-55.

• Optimization: Configure optimization options and view the progress of
the response optimization. See “Optimizing the System’s Response” on
page 5-63.

Note When optimizing responses in a SISO Design Task, you cannot add
uncertainty to parameters or compensator elements.

Selecting Tunable Compensator Elements
You can tune elements or parameters within compensators in your system so
that the response of the system meets the design requirements you specify.
To specify the compensator elements to tune:

1 Select the Compensators pane within the Response Optimization node.

2 Within the Compensators pane, select the check boxes in the Optimize
column that correspond to the compensator elements you want to tune.

In this example, to tune the Gain in the compensator C, select the check
box next to this element, as shown in the following figure.

5-54

Optimize LTI System to Meet Frequency-Domain Requirements

Note Compensator elements or parameters cannot have uncertainty when
used with frequency-domain based response optimization.

Adding Design Requirements
You can use both frequency-domain and time-domain design requirements
to tune parameters in a control system. The Design requirements pane
within the Response Optimization node of the Control and Estimation
Tools Manager provides an interface to create new design requirements and
select those you want to use for a response optimization.

5-55

5 Optimization-Based Control Design

This example uses the design specifications described in “Design
Requirements” on page 5-47. The following sections each create a new design
requirement to meet these specifications:

• “Settling Time Design Requirement” on page 5-56

• “Overshoot Design Requirement” on page 5-57

• “Rise Time Design Requirement” on page 5-59

• “Actuator Limit Design Requirement” on page 5-60

After you add the design requirements, you can select a subset of requirements
for controller design, as described in “Selecting the Design Requirements to
Use During Response Optimization” on page 5-63.

Settling Time Design Requirement
The first design specification for this example is to have a settling time of 30
seconds or less. This specification can be represented on a root-locus diagram
as a constraint on the real parts of the poles of the open loop system.

To add this design requirement:

1 Select the Design requirements pane within the Response
Optimization node of the Control and Estimation Tools Manager.

2 Click the Add new design requirement button. This opens the New
Design Requirement dialog box.

Within this dialog box you can specify new design requirements and add
them to a new or existing design or analysis plot.

3 Add a design requirement to the existing root-locus diagram:

a Select Pole/zero settling time from the Design requirement type
menu.

b Select Open-Loop L from the Requirement for response menu.

c Enter 30 seconds for the Settling time.

d Click OK.

5-56

Optimize LTI System to Meet Frequency-Domain Requirements

A vertical line should appear on the root-locus diagram, as shown in the
following figure.

Overshoot Design Requirement
The second design specification for this example is to have a percentage
overshoot of 10% or less. This specification is related to the damping ratio on
a root-locus diagram. In addition to adding a design requirement with the
Add new design requirement button, you can also right-click directly on
the design or analysis plots to add the requirement, as shown next.

To add this design requirement:

5-57

5 Optimization-Based Control Design

1 Right-click anywhere within the white space of the root-locus diagram in
the SISO Design Tool window. Select Design Requirements > New to
open the New Design Requirement dialog box.

2 Select Percent overshoot as the Design requirement type and enter 10
as the Percent overshoot.

3 Click OK to add the design requirement to the root-locus diagram. The
design requirement appears as two lines radiating at an angle from the
origin, as shown in the following figure.

5-58

Optimize LTI System to Meet Frequency-Domain Requirements

Rise Time Design Requirement
The third design specification for this example is to have a rise time of
10 seconds or less. This specification is related to a lower limit on a Bode
Magnitude diagram.

To add this design requirement:

1 Select the Graphical Tuning pane in the SISO Design Task node of the
Control and Estimation Tools Manager.

2 For Plot 2, set Plot Type to Open-Loop Bode.

3 Right-click anywhere within the white space of the open-loop bode diagram
in the SISO Design Tool window. Select Design Requirements > New to
open the New Design Requirement dialog box.

4 Create a design requirement to represent the rise time and add it to the
new Bode plot:

a Select Lower gain limit from the Design requirement type menu.

b Enter 1e-2 to 0.17 for the Frequency range.

c Enter 0 to 0 for the Magnitude range.

d Click OK.

A Bode diagram appears within the SISO Design Tool window. The
magnitude plot of the Bode diagram includes a horizontal line representing
the design requirement, as shown in the following figure.

5-59

5 Optimization-Based Control Design

Actuator Limit Design Requirement
The fourth design specification for this example is to limit the actuator signal
to within ±0.7. To add this design requirement:

1 Select the Design requirements pane in the Response Optimization
node of the Control and Estimation Tools Manager.

2 Click the Add new design requirement button to open the New Design
Requirement dialog box.

3 Create a time-domain design requirement to represent the upper limit
on the actuator signal, and add it to a new step response plot in the LTI
Viewer:

5-60

Optimize LTI System to Meet Frequency-Domain Requirements

a Select Step response upper amplitude limit from the Design
requirement type menu.

b Select Closed Loop r to u from the Requirement for response
menu.

c Enter 0 to 10 for the Time range.

d Enter 0.7 to 0.7 for the Amplitude range.

e Click OK. A second step response plot for the closed loop response from
r to u appears in the LTI Viewer. The plot contains a horizontal line
representing the upper limit on the actuator signal.

f To extend this limit for all times (to t=∞), right click on the black edge of
the design requirement, somewhere toward the right edge, and select
Extend to inf. The diagram should now appear as shown next.

5-61

5 Optimization-Based Control Design

To add the corresponding design requirement for the lower limit on the
actuator signal:

1 Select the Design requirements pane in the Response Optimization
node of the Control and Estimation Tools Manager.

2 Click the Add new design requirement button to open the New Design
Requirement dialog box.

3 Create a time-domain design requirement to represent the lower limit on
the actuator signal, and add it to the step response plot in the LTI Viewer:

a Select Step response lower amplitude limit from the Design
requirement type menu.

b Select Closed Loop r to u from the Requirement for response
menu.

c Enter 0 to 10 for the Time range.

d Enter -0.7 to -0.7 for the Amplitude range.

e Click OK. The step response plot now contains a second horizontal line
representing the lower limit on the actuator signal.

f To extend this limit for all times (to t=∞), right-click in the yellow shaded
area and select Extend to inf. The diagram should now appear as
shown in the following figure.

5-62

Optimize LTI System to Meet Frequency-Domain Requirements

Selecting the Design Requirements to Use During Response
Optimization
The design requirements give constraints on the dynamics of the system
and the values of response signals. The table in the Design requirements
tab lists all design requirements in the design and analysis plots. Select the
check boxes next to the design requirements you want to use in the response
optimization. This example uses all the current design requirements.

Optimizing the System’s Response
After selecting the compensator elements to tune and adding design
requirements for the response signals to satisfy, you are ready to being the
response optimization.

5-63

5 Optimization-Based Control Design

The Optimization pane within the Response Optimization node of the
Control and Estimation Tools Manager displays the progress of the response
optimization. The pane also contains options to configure the types of progress
information displayed during the optimization and options to configure the
optimization methods and algorithms.

To optimize the response of the system in this example, click the Start
Optimization button.

The Optimization pane displays the progress of the optimization, iteration
by iteration, as shown next. Termination messages from the optimization
method and suggestions for improving convergence also appear here.

The optimized signals in the design and analysis plots appear as follows:

5-64

Optimize LTI System to Meet Frequency-Domain Requirements

5-65

5 Optimization-Based Control Design

Creating and Displaying the Closed-Loop System
After designing a compensator by optimizing the response of the system, you
can export the compensator to the MATLAB workspace, and create a model of
the full closed-loop system.

1 Within the SISO Design Tool window, select File > Export to open the
SISO Tool Export dialog box.

2 Select the compensator you designed, Compensator C, and then click
the Export to Workspace button.

At the command line, enter the following command to create the closed-loop
system, CL, from the open-loop transfer function, open_loopTF, and the
compensator, C:

5-66

Optimize LTI System to Meet Frequency-Domain Requirements

CL=feedback(C*open_loopTF,1)

This returns the following model:

Zero/pole/gain from input to output "Output":
-0.19414 (s-2)

--
(s^2 + 0.409s + 0.1136) (s^2 + 3.591s + 3.418)

To create a step response plot of the closed loop system, enter the following
command:

step(CL);

This produces the following figure:

5-67

5 Optimization-Based Control Design

Designing Linear Controllers for Simulink Models
When you have Control System Toolbox and Simulink Control Design
software, you can perform frequency-domain optimization of Simulink models.

You can use Simulink Control Design software to configure SISO Design Tool
with compensators, inputs, outputs, and loops computed from a Simulink
model. For more information, see “Creating a SISO Design Task” in Simulink
Control Design documentation.

After you configure the SISO Design Tool, use Simulink Design Optimization
software to optimize the controller parameters of the linearized Simulink
model. For an example of optimization-based control design for a
model linearized using Simulink Control Design software, see “Design
Optimization-Based PID Controller for Linearized Simulink Model (GUI)”.

There is only one difference when tuning compensators derived from Simulink
Control Design software: The tuning of compensators from a Simulink
model is done through the masks of the Simulink blocks representing each
compensator. When selecting parameters to optimize, users can tune the
compensator in the pole, zero, or gain format, or in a format consistent with
the Simulink block mask as shown in the following figure. Changing the
compensator format is not possible when optimizing pure SISO Tool models
(those not derived using Simulink Control Design software).

5-68

Designing Linear Controllers for Simulink® Models

Mask of a Simulink® compensator block

5-69

5 Optimization-Based Control Design

Response optimization compensators pane

5-70

6

Lookup Tables

• “What are Adaptive Lookup Tables?” on page 6-2

• “How to Estimate Lookup Table Values” on page 6-5

• “Estimate Constrained Values of a Lookup Table” on page 6-6

• “Estimate Lookup Table Values from Data” on page 6-22

• “Building Models Using Adaptive Lookup Table Blocks” on page 6-36

• “Selecting an Adaptation Method” on page 6-40

• “Model Engine Using n-D Adaptive Lookup Table” on page 6-42

• “Using Adaptive Lookup Tables in Real-Time Environment” on page 6-56

6 Lookup Tables

What are Adaptive Lookup Tables?

Lookup Tables
Lookup tables store numeric data in a multidimensional array format. In the
simpler two-dimensional case, lookup tables can be represented by matrices.
Each element of a matrix is a numerical quantity, which can be precisely
located in terms of two indexing variables. At higher dimensions, lookup
tables can be represented by multidimensional matrices, whose elements are
described in terms of a corresponding number of indexing variables.

Lookup tables provide a means to capture the dynamic behavior of a physical
(mechanical, electronic, software) system. The behavior of a system with
M inputs and N outputs can be approximately described by using N lookup
tables, each consisting of an array with M dimensions.

You usually generate lookup tables by experimentally collecting or artificially
creating the input and output data of a system. In general, you need as
many indexing parameters as the number of input variables. Each indexing
parameter may take a value within a predetermined set of data points, which
are called the breakpoints. The set of all breakpoints corresponding to an
indexing variable is called a grid. Thus, a system with M inputs is gridded by
M sets of breakpoints. The software uses the breakpoints to locate the array
elements, where the output data of the system are stored. For a system with
N outputs, the software locates the N array elements and then stores the
corresponding data at these locations.

After you create a lookup table using the input and output measurements as
described previously, you can use the corresponding multidimensional array
of values in applications without having to remeasure the system outputs. In
fact, you need only the input data to locate the appropriate array elements in
the lookup table because the software reads the approximate system output
from the data stored at these locations. Therefore, a lookup table provides a
suitable means of capturing the input-output mapping of a static system in
the form of numeric data stored at predetermined array locations.

Adaptive Lookup Tables
Statically defined lookup tables, as described in “Lookup Tables” on page
6-2, cannot accommodate the time-varying behavior (characteristics) of a

6-2

What are Adaptive Lookup Tables?

physical plant. Static lookup tables establish a permanent and static mapping
of input-output behavior of a physical system. Conversely, the behavior of
actual physical systems often varies with time due to wear, environmental
conditions, and manufacturing tolerances. With such variations, the static
mapping of input-output behavior of a plant described by the lookup table
may no longer provide a valid representation of the plant characteristics.

Adaptive lookup tables incorporate the time-varying behavior of physical
plants into the lookup table generation and maintenance process while
providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a
plant’s behavior, which are then used to dynamically create and update the
content of the underlying lookup table. In addition to requiring the input data
to create the lookup table, the adaptive lookup table also uses the output
data of the plant to recalculate the table values. For example, you can collect
the output data of the plant by placing sensors at appropriate locations in a
physical system.

The software uses the input measurements to locate the array elements by
comparing these input values with the breakpoints defined for each indexing
variable. Next, it uses the output measurements to recalculate the numeric
value stored at these array locations. However, unlike a regular table, which
only stores the array data before the actual use of the lookup table, the
adaptive table continuously improves the content of the lookup table. This
continuous improvement of the table data is referred to as the adaptation
process or learning process.

The adaptation process involves statistical and signal processing algorithms
to recapture the input-output behavior of the plant. The adaptive lookup
table always tries to provide a valid representation of the plant dynamics
even though the plant behavior may be time varying. The underlying signal
processing algorithms are also robust against reasonable measurement noise
and they provide appropriate filtering of noisy output measurements.

See Also Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit)
| Adaptive Lookup Table (nD Stair-Fit)

6-3

6 Lookup Tables

Related
Examples

• “Model Engine Using n-D Adaptive Lookup Table” on page 6-42

Concepts • “About Lookup Table Blocks”
• “Building Models Using Adaptive Lookup Table Blocks” on page 6-36

6-4

How to Estimate Lookup Table Values

How to Estimate Lookup Table Values
You can use lookup table Simulink blocks to approximate a system’s behavior,
as described in “About Lookup Table Blocks” in the Simulink documentation.
After you build your system using lookup tables, you can use Simulink Design
Optimization software to estimate the table values from measured I/O data.

Estimating lookup table values is an example of estimating parameters
which are matrices or multi-dimensional arrays. The workflow for estimating
parameters of a lookup table consist of the following tasks:

1 Creating a Simulink model using lookup table blocks.

2 Importing the measured input and output (I/O) data from which you want
to estimate the table values.

3 Analyzing and preparing the I/O data for estimation.

4 Estimating the lookup table values.

5 Validating the estimated table values using a validation data set.

Related
Examples

• “Estimate Lookup Table Values from Data” on page 6-22
• “Estimate Constrained Values of a Lookup Table” on page 6-6

6-5

6 Lookup Tables

Estimate Constrained Values of a Lookup Table

In this section...

“Objectives” on page 6-6

“About the Data” on page 6-6

“Configuring a Project for Parameter Estimation” on page 6-7

“Estimating the Monotonically Increasing Table Values Using Default
Settings” on page 6-9

“Validating the Estimation Results” on page 6-16

Objectives
This example shows how to estimate constrained values of a lookup table. You
apply monotonically increasing constraints to the lookup table values, and
use the GUI to estimate the table values.

About the Data
In this example, you use lookup_increasing.mat, which contains the
measured I/O data for estimating the lookup table values. The MAT-file
includes the following variables:

• xdata1 — Consists of 602 uniformly-sampled input data points in the
range [-5,5].

• ydata1— Output data corresponding to the input data samples.

Note The output data is a monotonically increasing function of the input
data.

• time1 — Time vector.

You use the I/O data to estimate the values of the lookup table in the
lookup_increasing Simulink model. The table contains eleven values, which
are stored in the MATLAB variable table. To learn more about how to specify

6-6

Estimate Constrained Values of a Lookup Table

the table’s values, see “Enter Breakpoints and Table Data” in the Simulink
documentation.

Configuring a Project for Parameter Estimation
To estimate the monotonically increasing lookup table values, you must first
configure a Control and Estimation Tools Manager project.

1 Open the lookup table model by typing the following command at the
MATLAB prompt:

lookup_increasing

This command opens the Simulink model, and loads the estimation data
in the MATLAB workspace.

6-7

6 Lookup Tables

2 Double-click the Lookup Table block to view the monotonically increasing
constraint applied to the table output values.

The Table data field of the Function Block Parameters dialog box
shows the constraint. The cumulative sum function, cumsum, applies a
monotonically increasing constraint on the table output values. This
function computes the cumulative sum of the table values based on
estimation of the individual table elements from the I/O data.

6-8

Estimate Constrained Values of a Lookup Table

3 In the Simulink model, select Analysis > Parameter Estimation to open
a new project named lookup_increasing in the Control and Estimation
Tools Manager GUI.

Estimating the Monotonically Increasing Table Values
Using Default Settings
After you configure a project for parameter estimation, as described in
“Configuring a Project for Parameter Estimation” on page 6-7, use the
following steps to estimate the constrained lookup table values:

1 Import the estimation I/O data, as described in the “Importing Data into
the GUI” section of “Prepare Data for Parameter Estimation (GUI)”.

6-9

6 Lookup Tables

You can also load a preconfigured project that already contains the imported
data. To do so, type the following commands at the MATLAB prompt:

lookup_increasing;
explorer.loadProject('lookup_increasing_import',...
'Project - lookup_increasing','Estimation Data')

6-10

Estimate Constrained Values of a Lookup Table

2 Run an initial simulation to view the measured data, simulated table
values and the initial table values by typing the following commands at
the MATLAB prompt:

sim('lookup_increasing')
figure(1); plot(xdata1,ydata1, 'm*', xout, yout,'b^')
hold on; plot(-5:5, cumsum(table), 'k', 'LineWidth', 2)

The x- and y-axes represent the input and output data, respectively. The
figure shows the following plots:

• Measured data — Represented by the magenta stars (*).

Note As described in “About the Data” on page 6-6, the output data is a
monotonically increasing function of the input data.

• Initial table values — Represented by the black line.

• Initial simulation data — Represented by the blue deltas (Δ).

6-11

6 Lookup Tables

3 Select the table output values to estimate.

a In the Control and Estimation Tools Manager GUI, select the Variables
node under the Estimation Task node.

b Click Add to open the Select Parameters dialog box, where you see the
Simulink model parameters.

c Select table, and click OK to add the table values to the Estimated
Parameters tab.

The Default settings area of the GUI displays the default settings for
the table values. The Value field displays the initial table values.

d Select the Estimation node, and click New to add a New Estimation
node.

6-12

Estimate Constrained Values of a Lookup Table

e Select the New Estimation node. In the Parameters tab, select
the Estimate check box to specify the lookup table values, table, for
estimation.

6-13

6 Lookup Tables

4 In the Data Sets tab of the New Estimation node, select the Selected
check-box to specify the estimation data set.

5 Estimate the parameters using the default settings.

6-14

Estimate Constrained Values of a Lookup Table

a In the Estimation tab of the New Estimation node, click Start to
start the estimation.

The Control and Tools Manager GUI updates at each iteration, and
provides information about the estimation progress. After the estimation
completes, the Control and Estimation Tools Manager GUI looks similar
to the following figure.

6-15

6 Lookup Tables

b Select the Parameters tab of the New Estimation node to view the
estimated table values. The Value field displays the estimated table
values.

Validating the Estimation Results
After you estimate the table values, as described in “Estimating the
Monotonically Increasing Table Values Using Default Settings” on page 6-9,
you must use another data set to validate that you have not overfitted the
model. You plot and examine the following plots to validate the estimation
results:

• Residuals plot

• Measured and simulated data plots

To validate the estimation results:

6-16

Estimate Constrained Values of a Lookup Table

1 Import the validation I/O data, xdata2 and ydata2, and time vector, time2,
in the Control and Estimation Tools Manager GUI.

You can load a project that already contains the estimated parameters,
validation data set, and residuals plot. To do so, type the following
commands at the MATLAB prompt:

lookup_increasing;
explorer.loadProject('lookup_increasing_val',...
'Project - lookup_increasing', 'Validation Data')

This project also contains the Residuals plot already configured in the
Select plot types area of the GUI, as shown in the next figure. For more
information on how to configure this plot, see “Compare Measured and
Simulated Responses” on page 2-47.

6-17

6 Lookup Tables

2 Plot and examine the residuals.

a Select the New Validation node under the Validation node.

6-18

Estimate Constrained Values of a Lookup Table

b In the Options area, select Validation Data from the Validation data
set drop-down list.

6-19

6 Lookup Tables

c Click Show Plots to open the residuals plot.

The residuals, which show the difference between the simulated and
measured data, lie the range [-15,15]— within 20% of the maximum
output variation. This indicates a good match between the measured
and the simulated table data values.

6-20

Estimate Constrained Values of a Lookup Table

3 Plot and examine the validation data, simulated data and estimated table
values.

sim('lookup_increasing')
figure(2); plot(xdata2,ydata2, 'm*', xout, yout,'b^')
hold on; plot(-5:5, cumsum(table), 'k', 'LineWidth', 2)

The plot shows that the table values, shown as the black line, match both
the measured data and the simulated table values. The table data values
cover the entire range of input values, which indicates that all the lookup
table values have been estimated.

6-21

6 Lookup Tables

Estimate Lookup Table Values from Data

In this section...

“Objectives” on page 6-22

“About the Data” on page 6-22

“Configuring a Project for Parameter Estimation” on page 6-22

“Estimating the Table Values Using Default Settings” on page 6-24

“Validating the Estimation Results” on page 6-30

Objectives
This example shows how to estimate lookup table values from time-domain
input-output (I/O) data.

About the Data
In this example, you use the I/O data in lookup_regular.mat to estimate the
values of a lookup table. The MAT-file includes the following variables:

• xdata1— Consists of 63 uniformly-sampled input data points in the range
[0,6.5].

• ydata1— Consists of output data corresponding to the input data samples.

• time1 — Time vector.

You use the I/O data to estimate the lookup table values in the
lookup_regular Simulink model. The lookup table in the model contains ten
values, which are stored in the MATLAB variable table. The initial table
values comprise a vector of 0s. To learn more about how to model a system
using lookup tables, see “Guidelines for Choosing a Lookup Table” in the
Simulink documentation.

Configuring a Project for Parameter Estimation
To estimate the lookup table values, you must first configure a Control and
Estimation Tools Manager project.

6-22

Estimate Lookup Table Values from Data

1 Open the lookup table model by typing the following command at the
MATLAB prompt:

lookup_regular

This command opens the Simulink model, and loads the estimation data
into the MATLAB workspace.

2 In the Simulink model, select Analysis > Parameter Estimation to open
a new project named lookup_regular in the Control and Estimation
Tools Manager GUI.

6-23

6 Lookup Tables

Estimating the Table Values Using Default Settings
After you configure a project for parameter estimation, as described in
“Configuring a Project for Parameter Estimation” on page 6-22, use the
following steps to estimate the lookup table values.

1 Import the I/O data, xdata1 and ydata1, and the time vector, time1, into
the Control and Estimation Tools Manager GUI. For more information, see
“Import Data (GUI)” on page 1-4.

You can also load a preconfigured project that already contains the imported
data. To do so, type the following command at the MATLAB prompt:

lookup_regular;
explorer.loadProject('lookup_regular_import',...
'Project - lookup_regular', 'Estimation Data');

6-24

Estimate Lookup Table Values from Data

2 Run an initial simulation to view the I/O data, simulated output, and the
initial table values. To do so, type the following commands at the MATLAB
prompt:

sim('lookup_regular')
figure(1); plot(xdata1,ydata1, 'm*', xout, yout,'b^')
hold on; plot(linspace(0,6.5,10), table, 'k', 'LineWidth', 2);
legend('Measured data','Initial simulation data','Initial table values');

The x- and y-axes of the figure represent the input and output data,
respectively.

3 Select the table values to estimate.

a In the Control and Estimation Tools Manager GUI, select the Variables
node under the Estimation Task node.

b Click Add to open the Select Parameters dialog box, which shows the
Simulink model parameters.

6-25

6 Lookup Tables

c Select table, and click OK to add the table values to the Estimated
Parameters tab.

The Default settings area of the GUI displays the default settings
for the table values. The Value field displays the initial table values,
which comprise a vector of ten 0s.

d Select the Estimation node, and click New to add a New Estimation
node.

6-26

Estimate Lookup Table Values from Data

e Select the New Estimation node. In the Parameters tab, select
the Estimate check box to specify the lookup table values, table, for
estimation.

6-27

6 Lookup Tables

4 In the Data Sets tab of the New Estimation node, select the Selected
check box to specify the estimation data set.

5 Estimate the table values using the default settings.

6-28

Estimate Lookup Table Values from Data

a In the Estimation tab of the New Estimation node, click Start to
start the estimation.

The Control and Tools Manager GUI updates at each iteration, and
provides information about the estimation progress. After the estimation
completes, the Control and Estimation Tools Manager GUI looks similar
to the following figure.

6-29

6 Lookup Tables

b Select the Parameters tab in the New Estimation node to view the
estimated table values, which appear in the Value field.

Validating the Estimation Results
After you estimate the table values, as described in “Estimating the Table
Values Using Default Settings” on page 6-24, you must use another data set
to validate that you have not overfitted the model. You plot and examine the
following plots to validate the estimation results:

• Residuals plot

• Measured and simulated data plots

To validate the estimation results:

6-30

Estimate Lookup Table Values from Data

1 Import the validation I/O data, xdata2 and ydata2, and time vector, time2,
in the Control and Estimation Tools Manager GUI.

You can also load a project that already contains the estimated parameters,
and the validation data set. To do so, type the following commands at the
MATLAB prompt:

lookup_regular;
explorer.loadProject('lookup_regular_val',...
'Project - lookup_regular', 'Validation Data');

This project also contains the Residuals plot already configured in the
Select plot types area of the GUI, as shown in the next figure. For more
information on how to configure this plot, see “Compare Measured and
Simulated Responses” on page 2-47.

6-31

6 Lookup Tables

2 Plot and examine the residuals:

a Select the New Validation node under the Validation node.

6-32

Estimate Lookup Table Values from Data

b In the Options area, select Validation Data from the Validation data
set drop-down list.

6-33

6 Lookup Tables

c Click Show Plots to open the residuals plot.

The residuals, which show the difference between the simulated
and measured data, lie in the range [-0.15,0.15]— within 15% of the
maximum output variation. This indicates a good match between the
measured and the simulated table data values.

6-34

Estimate Lookup Table Values from Data

d Plot and examine the estimated table values against the validation data
set and the simulated table values by typing the following commands
at the MATLAB prompt.

sim('lookup_regular')
figure(2); plot(xdata2,ydata2, 'm*', xout, yout,'b^')
hold on; plot(linspace(0,6.5,10), table, 'k', 'LineWidth', 2)

The plot shows that the table values, displayed as the black line, match
both the validation data and the simulated table values. The table data
values cover the entire range of input values, which indicates that all
the lookup table values have been estimated.

6-35

6 Lookup Tables

Building Models Using Adaptive Lookup Table Blocks
Simulink Design Optimization software provides blocks for modeling systems
as adaptive lookup tables. You can use the adaptive lookup table blocks to
create lookup tables from measured or simulated data. You build a model
using the adaptive lookup table blocks, and then simulate the model to adapt
the lookup table values to the time-varying I/O data. During simulation, the
software uses the input data to locate the table values, and then uses the
output data to recalculate the table values. The updated table values are
stored in the adaptive lookup table block. For more information, see “What
are Adaptive Lookup Tables?” on page 6-2.

The Adaptive Lookup Table library has the following blocks:

• Adaptive Lookup Table (1D Stair-Fit) — One-dimensional adaptive lookup
table

• Adaptive Lookup Table (2D Stair-Fit) — Two-dimensional adaptive lookup
table

• Adaptive Lookup Table (nD Stair-Fit) — Multidimensional adaptive lookup
table

Note Use the Adaptive Lookup Table (nD Stair-Fit) block to create lookup
tables of three or more dimensions.

To access the Adaptive Lookup Tables library:

1 Open the Simulink Library Browser.

At the MATLAB prompt, enter simulink.

2 Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization node.

3 In the Simulink Design Optimization library tree, click Adaptive Lookup
Tables.

6-36

Building Models Using Adaptive Lookup Table Blocks

By default, the Adaptive Lookup Table blocks have two inputs and outputs.
You can display additional inputs and outputs in a block by selecting the
corresponding options in the Function Block Parameters dialog box. To learn
more about the options, see the block reference pages.

Adaptive Lookup Table Block Showing Inputs and Outputs

The 2-D Adaptive Lookup Table block has the following inputs and outputs:

• u and y— Input and output data of the system being modeled, respectively.

6-37

6 Lookup Tables

For example, to model an engine’s efficiency as a function of engine rpm
and manifold pressure, specify u as the rpm, y as the pressure, and y as
the efficiency signals.

• Tin — The initial table data.

• Enable— Signal to enable, disable, or reset the adaptation process.

• Lock— Signal to update only specified cells in the table.

• y — Value of the cell currently being adapted.

• N — Number of the cell currently being adapted.

• Tout — Values of the adapted table data.

For more information on how to use adaptive lookup tables, see “Model Engine
Using n-D Adaptive Lookup Table” on page 6-42.

A typical Simulink diagram using an adaptive lookup table block is shown in
the next figure.

Simulink® Diagram Using an Adaptive Lookup Table

In this figure, the Experiment Data block imports a set of experimental data
into Simulink through MATLAB workspace variables. The initial table is
specified in the block mask parameters. When the simulation runs, the initial
table begins to adapt to new data inputs and the resulting table is copied
to the block’s output.

See Also Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit)
| Adaptive Lookup Table (nD Stair-Fit)

6-38

Building Models Using Adaptive Lookup Table Blocks

Related
Examples

• “Model Engine Using n-D Adaptive Lookup Table” on page 6-42

Concepts • “What are Adaptive Lookup Tables?” on page 6-2
• “Selecting an Adaptation Method” on page 6-40

6-39

6 Lookup Tables

Selecting an Adaptation Method
You specify the algorithm using the Adaptation Method drop-down list in
the Function Block Parameters dialog box of an adaptive lookup table block.
This section discusses the details of these algorithms.

Sample Mean
Sample mean provides the average value of n output data samples and is
defined as:

y n
n

y i
i

n
() ()=

=
∑1

1

where y(i) is the ith measurement collected within a particular cell. For each
input data u, the sample mean at the corresponding cell is updated using
the output data measurement, y. Instead of accumulating n samples of data
for each cell, a recursive relation is used to calculate the sample mean. The
recursive expression is obtained by the following equation:

y n
n

y i y n
n

n n
y i

i

n

i

n
() () () ()= +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
−

⎡

⎣
⎢
⎢

⎤

⎦=

−

=

−

∑ ∑1 1 1
11

1

1

1
⎥⎥
⎥

+ = − − +1 1
1

1
n

y n
n

n
y n

n
y n() () ()

where y(n) is the nth data sample.

Defining a priori estimation error as e n y n y n() () ()= − − 1 , the recursive
relation can be written as:

y n y n
n

e n () () ()= − +1
1

where n ≥ 1 and the initial estimate y()0 is arbitrary.

In this expression, only the number of samples, n, for each cell— rather than
n data samples—is stored in memory.

6-40

Selecting an Adaptation Method

Sample Mean with Forgetting
The adaptation method “Sample Mean” on page 6-40 has an infinite memory.
The past data samples have the same weight as the final sample in calculating
the sample mean. Sample mean (with forgetting) uses an algorithm with
a forgetting factor or Adaptation gain that puts more weight on the more
recent samples. This algorithm provides robustness against initial response
transients of the plant and an adjustable speed of adaptation. Sample mean
(with forgetting) is defined as:

y n y i

y i y

n i
i
n

n i

i

n

n i
i
n

n i

i

n

() ()

() (

=

= +

−
=

−

=

−
=

−

=

−

∑
∑

∑
∑

1

1

1 1

1 1

1

λ
λ

λ
λ nn

s n
s n

y n
s n

y n)
()

()
()

()
()

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − − +1
1

1

where λ ∈[]0 1, is the Adaptation gain and s k n i
i
k

() = −
=∑ λ
1

.

Defining a priori estimation error as e n y n y n() () ()= − − 1 , where n ≥ 1 and

the initial estimate y()0 is arbitrary, the recursive relation can be written as:

y n y n
s n

e n y n e n
n

  () ()
()

() () ()= − + = − + −
−

1
1

1
1

1

λ
λ

A small value of λ results in faster adaptation. A value of 0 indicates short
memory (last data becomes the table value), and a value of 1 indicates long
memory (average all data received in a cell).

6-41

6 Lookup Tables

Model Engine Using n-D Adaptive Lookup Table

In this section...

“Objectives” on page 6-42

“About the Data” on page 6-42

“Building a Model Using Adaptive Lookup Table Blocks” on page 6-43

“Adapting the Lookup Table Values Using Time-Varying I/O Data” on page
6-52

Objectives
In this example, you learn how to capture the time-varying behavior of an
engine using an n-D adaptive lookup table. You accomplish the following
tasks using the Simulink software:

• Configure an adaptive lookup table block to model your system.

• Simulate the model to update the lookup table values dynamically.

• Export the adapted lookup table values to the MATLAB workspace.

• Lock a specific cell in the table during adaptation.

• Disable the adaptation process and use the adaptive lookup table as a
static lookup table.

About the Data
In this example, you use the data in vedata.mat which contains the following
variables measured from an engine:

• X— 10 input breakpoints for intake manifold pressure in the range [10,100]

• Y— 36 input breakpoints for engine speed in the range [0,7000]

• Z— 10x36 matrix of table data for engine volumetric efficiency

To learn more about breakpoints and table data, see “Anatomy of a Lookup
Table” in the Simulink documentation.

6-42

Model Engine Using n-D Adaptive Lookup Table

The output volumetric efficiency of the engine is time varying, and a function
of two inputs—intake manifold pressure and engine speed. The data in the
MAT-file is used to generate the time-varying input and output (I/O) data for
the engine.

Building a Model Using Adaptive Lookup Table
Blocks
In this portion of the tutorial, you learn how to build a model of an engine
using an Adaptive Lookup Table block.

1 Open a preconfigured Simulink model by typing the model name at the
MATLAB prompt:

enginetable1_data

The Experimental Data subsystem in the Simulink model generates
time-varying I/O data during simulation.

6-43

6 Lookup Tables

This command also loads the variables X, Y and Z into the MATLAB
workspace. To learn more about this data, see “About the Data” on page
6-42.

2 Add an Adaptive Lookup Table block to the Simulink model.

a Open the Simulink Library Browser.

At the MATLAB prompt, enter simulink.

b Open the Simulink Design Optimization library.

In the Libraries pane, expand the Simulink Design Optimization
node.

c In the Simulink Design Optimization library tree, click Adaptive
Lookup Tables.

d Drag and drop the Adaptive Lookup Table (nD Stair-Fit) block from the
Adaptive Lookup Tables library to the Simulink model window.

6-44

Model Engine Using n-D Adaptive Lookup Table

3 Double-click the Adaptive Lookup Table (nD Stair-Fit) block to open the
Function Block Parameters: Adaptive Lookup Table (nD Stair-Fit) dialog
box.

6-45

6 Lookup Tables

4 In the Function Block Parameters dialog box:

a Specify the following block parameters:

• Table breakpoints (cell array)— Enter {[X; 110], [Y; 7200]}
to specify the range of input breakpoints.

• Table data (initial) — Enter rand(10,36) to specify random
numbers as the initial table values for the volumetric efficiency.

• Table numbering data— Enter reshape(1:360,10,36) to specify
a numbering scheme for the table cells.

b Verify that Sample mean (with forgetting) is selected in the
Adaptation method drop-down list.

c Enter 0.98 in the Adaptation gain (0 to 1) field to specify the forgetting
factor for the Sample mean (with forgetting) adaptation algorithm.

An adaptation gain close to 1 indicates high robustness of the lookup
table values to input noise. To learn more about the adaptation gain, see
“Sample Mean with Forgetting” on page 6-41 in “Selecting an Adaptation
Method” on page 6-40.

d Select the Make adapted table an output check box.

This action adds a new port named Tout to the Adaptive Lookup Table
block. You use this port to plot the table values as they are being
adapted.

e Select the Add adaptation enable/disable/reset port check box.

This action adds a new port named Enable to the Adaptive Lookup Table
block. You use this port to enable or disable the adaptation process.

f Select the Add cell lock enable/disable port check box.

This action adds a new port named Lock to the Adaptive Lookup Table
block. You use this port to lock a cell during the adaptation process.

g Verify that Ignore is selected in the Action for out-of-range drop-down
list.

This selection specifies that the software ignores any time-varying
inputs outside the range of input breakpoints during adaptation.

6-46

Model Engine Using n-D Adaptive Lookup Table

Tip To learn more, see Adaptive Lookup Table (nD Stair-Fit) block
reference page.

After you configure the parameters, the block parameters dialog box
looks like the following figure.

h Click OK to close the Function Block Parameters dialog box.

The Simulink model now looks similar to the following figure.

6-47

6 Lookup Tables

5 Assign the input and output data to the engine model by connecting the
U and Y ports of the Experimental Data block to the u and y ports of the
Adaptive Lookup Table block, respectively.

Tip To learn how to connect blocks in the Simulink model window, see
“Connect Blocks” in the Simulink documentation.

6 Design a logic using Simulink blocks to enable or disable the adaptation
process. Connect the logic to the Adaptive Lookup Table block, as shown in
the following figure.

6-48

Model Engine Using n-D Adaptive Lookup Table

This logic outputs an initial value of 1 which enables the adaptation process.

7 Design a logic to lock a cell during adaptation. Connect the logic to the
Adaptive Lookup Table block, as shown in the following figure.

8 In the Simulink Library Browser, select the Simulink > Sinks library,
and drag Display blocks to the model window. Connect the blocks, as
shown in the following figure.

6-49

6 Lookup Tables

During simulation, the Display blocks show the following:

• Display block — Shows the value of the current cell being adapted.

• Display1 block — Shows the number of the current cell being adapted.

9 Write a MATLAB function to plot the lookup table values as they adapt
during simulation.

Alternatively, type enginetable at the MATLAB prompt to open a
preconfigured Simulink model. The Efficiency Surface subsystem
contains a function to plot the lookup table values, as shown in the next
figure.

10 Connect a To Workspace block to export the adapted table values:

a In the Simulink Library Browser, select the Simulink > Sinks library,
and drag the To Workspace block to the model window.

6-50

Model Engine Using n-D Adaptive Lookup Table

To learn more about this block, see the To Workspace block reference
page in the Simulink documentation.

b Double-click the To Workspace block to open the Sink Block Parameters
dialog box, and type Tout in the Variable name field.

c Click OK.

d Connect the To Workspace block to the adaptive lookup table output
signal Tout, as shown in the next figure.

6-51

6 Lookup Tables

You have now built the model for updating and viewing the adaptive lookup
table values. You must now simulate the model to start the adaptation, as
described in “Adapting the Lookup Table Values Using Time-Varying I/O
Data” on page 6-52.

Adapting the Lookup Table Values Using
Time-Varying I/O Data
In this portion of the tutorial, you learn how to update the lookup table values
to adapt to the time-varying input and output values.

You must have already built the Simulink model, as described “Building a
Model Using Adaptive Lookup Table Blocks” on page 6-43.

To perform the adaptation:

1 In the Simulink Editor, specify the simulation time as inf.

The simulation time of infinity specifies that the adaptation process
continues as long as the input and output values of the engine change.

2 In the Simulink Editor, select Simulation > Run to start the adaptation
process.

A figure window opens that shows the volumetric efficiency of the engine as
a function of the intake manifold pressure and engine speed:

6-52

Model Engine Using n-D Adaptive Lookup Table

• The left plot shows the measured volumetric efficiency as a function of
intake manifold pressure and engine speed.

• The right plot shows the volumetric efficiency as it adapts with the
time-varying intake manifold pressure and engine speed.

During simulation, the lookup table values displayed on the right plot
adapt to the variations in the I/O data. The left and the right plots resemble
each other after a few seconds, as shown in the next figure.

6-53

6 Lookup Tables

Tip During simulation, the Cell Number and Adaptive Table Outputs
blocks in the Simulink model display the cell number, and the adapted
lookup table value in the cell, respectively.

3 Pause the simulation by selecting Simulation > Pause.

This action also exports the adapted table values Tout to the MATLAB
workspace.

Note After you pause the simulation, the adapted table values are stored
in the Adaptive Lookup Table block.

4 Examine that the left and the right plots match. This resemblance
indicates that the table values have adapted to the time-varying I/O data.

5 Lock a table cell so that only one cell adapts. You may find this feature
useful if a portion of the data is highly erratic or otherwise difficult for the
algorithm to handle.

a Select Simulation > Run to restart the simulation.

6-54

Model Engine Using n-D Adaptive Lookup Table

b Double-click the Lock block. This action toggles the switch and feeds the
output of the ON block to theLock input port of the Adaptive Lookup
Table(nD Stair-Fit) block.

You can view the number of the locked cell in the Cell Number block in
the Simulink model.

6 After the table values adapt to the time-varying I/O data, you can continue
to use the Adaptive Lookup Table block as a static lookup table:

a In the Simulink model window, double-click the Enable block. This
action toggles the switch, and disables the adaptation.

b Select Simulation > Run to restart the simulation, if it is not already
running.

During simulation, the Adaptive Lookup Table block works like a
static lookup table, and continues to estimate the output values as the
input values change. You can see the current lookup table value in the
Adaptive Table Outputs block in the Simulink model window.

Note After you disable the adaptation, the Adaptive Lookup Table block
does not update the stored table values, and the figure that displays the
table values does not update.

See Also Adaptive Lookup Table (nD Stair-Fit)

Concepts • “What are Adaptive Lookup Tables?” on page 6-2

6-55

6 Lookup Tables

Using Adaptive Lookup Tables in Real-Time Environment
You can use experimental data from sensor measurements collected by
running various tests on a system in real time. The measured data is then
sent to the adaptive table block to generate a lookup table describing the
relation between the system inputs and output.

You can also use the Adaptive Lookup Table block in a real-time environment,
where some time-varying properties of a system need to be captured. To do
so, generate C code using Simulink Coder™ code generation software that
can then be run in an Simulink Real-Time™ or dSPACE® software. Because
you can start, stop, or reset the adaptation if you want, use logic to enable
the adaptation of the table data only when it is desired. The cell number
output N, and the Enable and Lock inputs facilitate this process. Use the
Enable input to start and stop the adaptation and the Lock input to update
only one of the table cells. The Lock input combined with some logic using
the cell number output N provide the means for updating only the desired
table cells during a simulation run.

See Also Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit)
| Adaptive Lookup Table (nD Stair-Fit)

Related
Examples

• “Model Engine Using n-D Adaptive Lookup Table” on page 6-42

Concepts • “What are Adaptive Lookup Tables?” on page 6-2

6-56

	toc
	Data Analysis and Processing
	Model Requirements for Importing Data
	More About
	Import Data (GUI)
	Creating an Estimation Project
	Importing Time-Domain Data into the GUI
	Importing Input Data and Time Vector
	Importing Output Data and Time Vector

	Importing Time-Series Data into the GUI
	Importing Complex Data into the GUI

	Plot and Analyze Data (GUI)
	Why Plot the Data Before Parameter Estimation
	How To Plot Data in the GUI

	Ways to Preprocess Data
	Preprocess Data (GUI)
	Opening the Data Preprocessing Tool
	Handling Missing Data
	Removing Missing Data
	Interpolating Missing Data

	Handling Outliers
	Detrending Data
	Filtering Data
	Types of Filters
	How to Filter Data

	Selecting Data
	Techniques for Excluding Data in the Data Preprocessing Tool
	Graphically Selecting Data
	Using Rules to Select Data Samples
	Using the Data Table to Select Data Samples

	Add Preprocessed Data Sets to Estimation Project (GUI)
	Overwriting an Existing Data Set
	Creating a New Data Set

	Export Prepared Data to the MATLAB Workspace

	Parameter Estimation
	Specify Estimation Data
	Creating an Estimation Task
	How to Specify Data

	Specify Parameters to Estimate
	Choosing Which Parameters to Estimate First
	How to Specify Parameters for Estimation
	Specifying Initial Guesses and Upper/Lower Bounds

	Specify Independent Parameters to Estimate
	Specify Known Initial States
	When to Specify Initial States Versus Estimate Initial States
	How to Specify Initial States in the GUI

	Progress Plots
	Types of Plots
	Basic Steps for Creating Plots

	Estimation and Simulation Options
	Estimation Options
	Accessing Estimation Options
	Supported Estimation Methods
	Selecting Optimization Termination Options
	Selecting Additional Optimization Options
	Specifying Goodness of Fit Criteria (Cost Function)
	How to Specify Estimation Options in the GUI

	Simulation Options
	Accessing Simulation Options
	Selecting Simulation Time
	Selecting Solvers

	Progress Display Options
	Run Estimation
	Model Validation
	Load and Import Validation Data
	Compare Measured and Simulated Responses
	Compare Residuals
	Accelerating Model Simulations During Estimation
	About Accelerating Model Simulations During Estimation
	Limitations
	Setting the Accelerator Mode for Parameter Estimation

	Speedup Using Parallel Computing
	When to Use Parallel Computing for Parameter Estimation
	How Parallel Computing Speeds Up Estimation
	Parallel Computing with Nonlinear least squares and Gradient des
	Parallel Computing with the Pattern search Method

	How to Use Parallel Computing
	Configure Your System for Parallel Computing
	Model Dependencies
	Making File Dependencies Accessible to Remote Workers
	Making Data Dependencies Accessible to Remote Workers

	Estimate Parameters Using Parallel Computing (GUI)
	Estimate Parameters Using Parallel Computing (Code)
	Troubleshooting
	Why are the estimation results with and without using parallel c
	Why do I not see the estimation speedup I expected using paralle
	Why does the estimation using parallel computing not make any pr
	Why do I receive an error "Cannot save model tpe5468c55_910c_427
	Why does the estimation using parallel computing not stop when I

	Estimating Initial Conditions for Blocks with External Initial C
	Estimate Model Parameters and Initial States (GUI)
	Loading the Example
	Model Parameters
	Setting Up the Estimation Project
	Importing Transient Data and Selecting Parameters for Estimation
	Selecting Parameters and Initial Conditions for Estimation
	Creating the Estimation Task
	Running the Estimation and Viewing Results
	Related Examples

	Estimation Projects
	Structure of an Estimation Project
	Managing Multiple Projects and Tasks
	Adding, Deleting and Renaming an Estimation Project
	Saving Control and Estimation Tools Manager Projects
	Loading Control and Estimation Tools Manager Projects

	How the Software Formulates Parameter Estimation as an Optimizat
	Overview of Parameter Estimation as an Optimization Problem
	Cost Function
	Types
	Time Base

	Bounds and Constraints
	Optimization Methods and Problem Formulations

	Writing a Cost Function
	Cost Function Overview
	Convenience Objects
	Inputs
	Model Parameters and States
	Multiple Inputs

	Evaluate Requirements
	Outputs
	Cost and Constraint Values
	Multiple Objectives

	Gradient Computations
	Estimate Model Parameter Values (Code)
	Aircraft Model
	Estimation Problem
	Define the Estimation Experiment
	Compare the Measured Output and the Initial Simulated Output
	Specify the Parameters to Estimate
	Define the Estimation Objective Function
	Estimate the Parameters
	Compare the Measured Output and the Final Simulated Output
	Update the Model Parameter Values
	Estimate Model Parameters and Initial States (Code)
	RC Circuit Model
	Estimation Problem
	Define the Estimation Experiment
	Compare the Measured Output and the Initial Simulated Output
	Specify the Parameters to Estimate
	Define the Estimation Objective Function
	Estimate the Parameters
	Compare the Measured Output and the Simulated Output
	Estimate the Initial State
	Compare the Measured Output and the Final Simulated Output
	Update the Model Parameter Values
	Estimate Model Parameters using Multiple Experiments (Code)
	Open the Model and Get Experimental Data
	Define the Estimation Experiments
	Compare the Measured Output and the Initial Simulated Output
	Specify Parameters to Estimate
	Define the Estimation Objective
	Estimate the Parameters
	Compare the Measured Output and the Final Simulated Output
	Update the Model Parameter Values
	Estimate Model Parameters Per Experiment (Code)
	Open the Model and Get Experimental Data
	Plot the Experiment Data
	Define the Estimation Experiments
	Compare the Measured Output and the Initial Simulated Output
	Specify Parameters to Estimate
	Define the Estimation Objective
	Estimate the Parameters
	Compare the Measured Output and the Final Simulated Output
	Update the Model Parameter Values
	Estimate Model Parameters with Parameter Constraints (Code)
	Open the Model and Get Experimental Data
	Plot the Experiment Data
	Define the Estimation Experiment
	Compare the Measured Output and the Initial Simulated Output
	Specify Parameters to Estimate
	Define the Estimation Objective
	Estimate the Parameters
	Compare the Measured Output and the Final Simulated Output
	Update the Model Parameter Values
	Estimate Model Parameter Values (GUI)
	Simulink® Model of the Engine Throttle System
	Throttle Model Description
	Estimation Data
	Define Variables
	The Estimation Task
	Viewing the Results
	Validation
	Conclusion

	Response Optimization
	How the Optimization Algorithm Formulates Minimization Problems
	Feasibility Problem and Constraint Formulation
	Tracking Problem
	Gradient Descent Method Problem Formulations
	Simplex Search Method Problem Formulations
	Pattern Search Method Problem Formulations
	Gradient Computations

	Specify Signals to Log
	See Also
	Specifying Step Response Characteristics
	Specify Step Response Characteristics
	See Also

	Specifying Custom Requirements
	Move Constraints
	Move Constraints Graphically
	Position Constraints Exactly

	Specify Time-Domain Design Requirements
	Specify Piecewise-Linear Lower and Upper Bounds
	Specify Signal Property Requirements
	Property List
	Custom Signal Property
	Specify Step Response Characteristics
	See Also
	Track Reference Signals
	See Also
	Specify Custom Requirements
	See Also
	Edit Design Requirements
	Edit Design Requirement Dialog Box Parameters

	Edit Design Requirements
	Edit Design Requirement Dialog Box Parameters

	Specify Frequency-Domain Design Requirements
	Specify Lower Bounds on Gain and Phase Margin
	Specify Piecewise-Linear Lower and Upper Bounds on Frequency Res
	Specify Bound on Closed-Loop Peak Gain
	Specify Lower Bound on Damping Ratio
	Specify Upper and Lower Bounds on Natural Frequency
	Specify Upper Bound on Approximate Settling Time
	Specify Piecewise-Linear Upper and Lower Bounds on Singular Valu
	Specify Step Response Characteristics
	See Also
	Specify Custom Requirements
	See Also

	Specify Design Variables
	Specify Independent Parameters to Optimize
	Update Model with Design Variables Set
	General Options
	Accessing General Options
	Progress Options
	Result Options

	Optimization Options
	Accessing Optimization Options
	Selecting Optimization Methods
	Selecting Optimization Termination Options
	Selecting Additional Optimization Options
	Display Level
	Restarts

	Create Linearization I/O Sets
	Create Linearization I/O Set

	Linearization Options
	Accessing Linearization Options
	Configuring Linearization Options
	Models with Time Delays
	Linearization Sampling Time
	Linearization Rate Conversion Method

	Plots in the Design Optimization Tool
	Adding Plots in Design Optimization Tool
	Plotting Current Response
	Plotting Intermediate Steps
	Modifying Plot Properties
	Modifying Properties of Response Plots

	Plot Types
	Response Plots
	Spider Plots
	Iteration Plots

	Export Design Variables and Requirement Values for an Iteration

	Compare Requirements and Design Variables Using Spider Plot
	Open the Simulink model and load the pre-configured Design Optim
	Evaluate the requirement before optimization.
	Plot the requirement value before optimization.
	Optimize the model.
	Compare the requirement values before and after optimization.
	Export Design Variable Values for Specific Iteration
	Design Optimization to Meet Time- and Frequency-Domain Requireme
	Aircraft Longitudinal Flight Control Model
	Controller Design Problem
	Open the Design Optimization Tool
	Specify Design Variables
	Evaluate the Initial Design
	Optimize the Design
	Design Optimization to Meet a Custom Objective (GUI)
	Hydraulic Cylinder Model
	Hydraulic Cylinder Design Problem
	Open the Design Optimization Tool
	Specify Design Variables
	Specify Design Requirements
	Specify Custom Objective
	Evaluate the Initial Design
	Optimize the Design
	Related Examples
	Design Optimization to Meet a Custom Objective (Code)
	Hydraulic Cylinder Model
	Hydraulic Cylinder Design Problem
	Specify Design Variables
	Specify Design Requirements
	Create Objective/Constraint Function
	Evaluate the Initial Design
	Optimize the Design
	Update the Model Variable Values
	Related Examples
	Design Optimization to Meet Custom Signal Requirements (GUI)
	Design Optimization to Meet Frequency-Domain Requirements (GUI)
	Suspension Model
	Design Problem
	Open the Design Optimization Tool
	Specify Design Variables
	Specify Linear Analysis Input/Output Points
	Add Bandwidth and Damping-Ratio Requirements
	Add a Reliability Requirement
	Optimize the Design
	Analyze the Design
	Specify Custom Signal Objective with Uncertain Variable (GUI)
	Competitive Population Dynamics Model
	Population Stabilization Design Problem
	Open Design Optimization Tool
	Specify Custom Signal Objective Function
	Custom Signal Objective Function Details
	Optimize Design
	Design Optimization with Uncertain Variables (Code)
	Continuously Stirred Tank Reactor (CSTR) Model
	CSTR Design Problem
	Specify Design Variables
	Specify Uncertain Variables
	Specify Design Requirements
	Create Objective/Constraint Function
	Evaluate Initial Design
	Optimize Design
	Evaluate Optimized Design
	Related Examples
	References
	Generate MATLAB Code for Design Optimization Problems (GUI)
	Hydraulic Cylinder Design Problem
	Generate MATLAB Code
	Run Generated Code
	Modify the Generated Code
	Skip Model Simulation Based on Parameter Constraint Violation (G
	Thermostat Model
	Thermostat Design Problem
	Open the Design Optimization Tool
	Specify Parameter Constraint
	Optimize the Design
	View Optimized Model Response
	Optimizing Parameters for Robustness
	What Is Robustness?
	Related Examples
	More About
	Sampling Methods for Uncertain Parameters
	Related Examples
	More About
	Optimize Parameters for Robustness (GUI)
	Specify Random Values
	More About

	Accelerating Model Simulations During Optimization
	About Accelerating Optimization
	Limitations
	Setting Accelerator Mode for Response Optimization

	Speedup Using Parallel Computing
	When to Use Parallel Computing for Response Optimization
	How Parallel Computing Speeds Up Optimization
	Parallel Computing with the Gradient Descent Method
	Parallel Computing with the Pattern Search Method

	How to Use Parallel Computing
	Configure Your System for Parallel Computing
	Model Dependencies
	Making File Dependencies Accessible to Remote Workers
	Making Data Dependencies Accessible to Remote Workers

	Optimize Design Using Parallel Computing (GUI)
	Optimize Design Using Parallel Computing (Code)
	Troubleshooting
	Why are the optimization results with and without using parallel
	Why do I not see the optimization speedup I expected using paral
	Why does the optimization using parallel computing not make any
	Why does the optimization using parallel computing not stop when

	Optimization Does Not Make Progress
	Should I worry about the scale of my responses and how constrain
	Why don't the responses and parameter values change at all?
	Why does the optimization stall?

	Optimization Convergence
	What to do if the optimization does not get close to an acceptab
	Why does the optimization terminate before exceeding the maximum
	What to do if the optimization takes a long time to converge eve
	What to do if the response becomes unstable and does not recover

	Optimization Speed and Parallel Computing
	How can I speed up the optimization?
	Why are the optimization results with and without using parallel
	Why do I not see the optimization speedup I expected using paral
	Why does the optimization using parallel computing not make any
	Why does the optimization using parallel computing not stop when

	Undesirable Parameter Values
	What to do if the optimization drives the tuned compensator elem
	What to do if the optimization violates bounds on parameter valu

	Reverting to Initial Parameter Values
	How do I quit an optimization and revert to my initial parameter

	Manage Design Optimization Tool Session
	Save a Session
	Load a Session

	Optimizing Time-Domain Response of Simulink® Models Using Parall
	Opening the Model
	Design Requirements
	Configuring and Running the Optimization in the GUI Using Parall
	Configuring and Running the Optimization at the Command Line
	Closing the Model

	Sensitivity Analysis
	What Is Sensitivity Analysis?
	Sampling Parameters for Sensitivity Analysis
	Probability Distribution
	Bounds
	Number of Samples
	Method of Sampling
	Custom Sample Sets
	Specify Customized Probability Distribution
	Create Table of Custom Samples

	Sensitivity Analysis Methods
	Visual Analysis
	Quantitative Analysis
	Linear vs. Ranked Analysis

	Perform Sensitivity Analysis Using Parallel Computing
	Configure Your System for Parallel Computing
	Model Dependencies
	Making File Dependencies Accessible to Remote Workers
	Making Data Dependencies Accessible to Remote Workers

	Perform Sensitivity Analysis Using Parallel Computing

	Design Exploration using Parameter Sampling (Code)
	Continuously Stirred Tank Reactor (CSTR) Model
	CSTR Design Problem
	Specify Design Variables
	Sample the Design Space
	Specify Uncertain Variables
	Create Evaluation Function
	Evaluate
	Refine the Design Space
	Related Examples
	References
	Identify Key Parameters for Estimation (Code)
	Model Description
	Compare Measured Data to Initial Simulated Output
	Sensitivity Analysis
	Optimization
	Visualizing Result of Optimization

	Optimization-Based Control Design
	Overview of Optimization-Based Compensator Design
	Time-Domain Design Requirements in Simulink
	Specify Piecewise-Linear Lower and Upper Bounds
	Specify Step Response Characteristics
	See Also
	Track Reference Signals
	See Also
	Specify Custom Requirements
	See Also
	Edit Design Requirements
	Edit Design Requirement Dialog Box Parameters

	Frequency-Domain Design Requirements in Simulink
	Specify Lower Bounds on Gain and Phase Margin
	Specify Piecewise-Linear Lower and Upper Bounds on Frequency Res
	Specify Bound on Closed-Loop Peak Gain
	Specify Lower Bound on Damping Ratio
	Specify Upper and Lower Bounds on Natural Frequency
	Specify Upper Bound on Approximate Settling Time
	Specify Piecewise-Linear Upper and Lower Bounds on Singular Valu
	Specify Step Response Characteristics
	See Also
	Specify Custom Requirements
	See Also

	Time- and Frequency-Domain Requirements in SISO Design Tool
	Root Locus Diagrams
	Settling Time
	Percent Overshoot
	Damping Ratio
	Natural Frequency
	Region Constraint

	Open-Loop and Prefilter Bode Diagrams
	Gain and Phase Margins
	Upper Gain Limit
	Lower Gain Limit

	Open-Loop Nichols Plots
	Phase Margin
	Gain Margin
	Closed-Loop Peak Gain
	Gain-Phase Requirement

	Step/Impulse Response Plots
	Upper Time Response Bound
	Lower Time Response Bound

	Time-Domain Simulations in SISO Design Tool
	How to Design Optimization-Based Controllers for LTI Systems
	Optimize LTI System to Meet Frequency-Domain Requirements
	Introduction
	Design Requirements
	Creating an LTI Plant Model
	Creating Design and Analysis Plots
	Creating a Response Optimization Task
	Selecting Tunable Compensator Elements
	Adding Design Requirements
	Settling Time Design Requirement
	Overshoot Design Requirement
	Rise Time Design Requirement
	Actuator Limit Design Requirement
	Selecting the Design Requirements to Use During Response Optimiz

	Optimizing the System's Response
	Creating and Displaying the Closed-Loop System

	Designing Linear Controllers for Simulink Models

	Lookup Tables
	What are Adaptive Lookup Tables?
	Lookup Tables
	Adaptive Lookup Tables

	How to Estimate Lookup Table Values
	Estimate Constrained Values of a Lookup Table
	Objectives
	About the Data
	Configuring a Project for Parameter Estimation
	Estimating the Monotonically Increasing Table Values Using Defau
	Validating the Estimation Results

	Estimate Lookup Table Values from Data
	Objectives
	About the Data
	Configuring a Project for Parameter Estimation
	Estimating the Table Values Using Default Settings
	Validating the Estimation Results

	Building Models Using Adaptive Lookup Table Blocks
	Selecting an Adaptation Method
	Sample Mean
	Sample Mean with Forgetting

	Model Engine Using n-D Adaptive Lookup Table
	Objectives
	About the Data
	Building a Model Using Adaptive Lookup Table Blocks
	Adapting the Lookup Table Values Using Time-Varying I/O Data

	Using Adaptive Lookup Tables in Real-Time Environment

	tables
	Minimization Problem
	Mixed Minimization and Feasibility Problem
	Feasibility Problem
	Minimization Problem
	Mixed Minimization and Feasibility Problem
	Feasibility Problem
	Minimization Problem
	Mixed Minimization and Feasibility Problem
	Feasibility Problem
	Minimization Problem
	Mixed Minimization and Feasibility Problem
	Feasibility Problem
	Requirements objects:
	Edit Design Requirement Dialog Box Parameters
	Edit Design Requirement Dialog Box Parameters
	Edit Design Requirement Dialog Box Parameters

